【1】Python机器学习之基础概念
1、什么是机器学习
最早的机器学习应用——垃圾邮件分辨
传统的计算机解决问题思路:
- 编写规则,定义“垃圾邮件”,让计算机执行
- 对于很多问题,规则很难定义
- 规则不断变化
机器学习在图像识别领域的重要应用:
人脸识别:
机器学习算法:
深入理解算法基本原理
实际使用算法解决真实场景的问题
对不同算法进行对比试验
对同一算法的不同参数进行对比试验
对部分算法底层编写
介绍如何使用算法
- 如何评价算法的好坏
- 如何解决过拟合和欠拟合
- 如何调节算法的参数
- 如何验证算法的正确性
Python机器学习技术栈
语言:Python3
框架:Scikit-learn
其他:numpy、matplotlib,…
IDE:Jupyter Notebook、Pycharm
1、数据
莺尾花数据集
https://en.wikipedia.org/wiki/Iris_flower_data_set
关于特征信息的描述定义:
2.1、数据集、样本、特征、label
行数即代表样本个数,列数即代表每个样本的特征数
最后一列 label 用表示小写 y 表示
- 数据整体叫做数据集(data set)
- 每一行数据称为一个样本(sample)
- 除了最后一列, 每一列表达样本的一个特征(feature)
- 最后一列,称为标记(label)
- 通常大写字母表示矩阵,小写字母表示向量,如上X、y
通常大写字母表示矩阵,小写字母表示向量,如上X、y
- 特征空间(feature space)
- 分类任务本质就是在特征空间切分
- 在高纬空间同理
特征
特征可以很具体,也可以很抽象
- 图像,每个像素点都是特征
- 28 * 28 的图像有 28 * 28 = 784 个特征
- 如果是彩色图像特征更多
机器学习的基本任务
机器学习(监督学习)分为两类任务:
- 分类
- 回归
分类任务
二分类(猫、狗)
- 判断邮件是垃圾邮件、不是垃圾邮件 ;
- 判断发放给客户信用卡有风险、没有风险 ;
- 判断病患良性肿瘤、恶性肿瘤 ;
- 判断某支股票涨、跌
多分类(手写数字识别)
- 数字识别
- 图像识别
- 数字识别
- 判断发给客户信用卡的风险等级评估
- **数字识别(MNIST数据集):
多标签分类
综合图片中有女人、网球拍、运动短裤等等推测出这是一个女网球运动员。
二分类 VS 多分类
- 一些算法只支持完成二分类的任务
- 但是多分类的任务可以转换成二分类的任务
- 有一些算天然可以完成多分类任务
回归任务
回归任务定义
对于上图表数据中,有四个特征,但是最后一列的标签列不是一个类别,是一个连续的数字,这类任务叫回归任务。
回归任务:结果是一个连续数字的值,而非一个类别
- 房屋价格
- 市场分析
- 学生成绩
分类任务 VS 回归任务
- 有一些算法只能解决回归问题
- 有一些算法只能解决分类问题
- 有一些算法的思路既可以解决回归问题,又可以解决分类问题
- 一些情况下,回归任务可以简化为分类任务
机器学习方法的分类(算法角度)
- 监督学习
- 非监督学习
- 半监督学习
- 增强学习
监督学习
给机器的训练数据拥有“标记”、“答案”
如猫狗分类、MNIST手写数字识别
- 图像已经拥有了标定的信息
- 银行已经积累了一定的客户信息和他们信用卡的信用情况
- 市场积累了房屋的基本信息和最终成交的金额
- …
监督学习算法主要包括以下:
非监督学习
半监督学习
增强学习
相关文章:

【1】Python机器学习之基础概念
1、什么是机器学习 最早的机器学习应用——垃圾邮件分辨 传统的计算机解决问题思路: 编写规则,定义“垃圾邮件”,让计算机执行对于很多问题,规则很难定义规则不断变化 机器学习在图像识别领域的重要应用: 人脸识别…...
HashMap源码解析
目录 一:put方法流程 二:get方法 三:扩容机制 一:put方法流程 public V put(K key, V value) {return putVal(hash(key), key, value, false, true); }final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {No…...

[Javascript】前端面试基础3【每日学习并更新10】
Web开发中会话跟踪的方法有那些 cookiesessionurl重写隐藏inputip地址 JS基本数据类型 String:用于表示文本数据。Number:用于表示数值,包括整数和浮点数。BigInt:用于表示任意精度的整数。Boolean:用于表示逻辑值…...

C++自定义字典树结构
代码 #include <iostream> using namespace std;class TrieNode { public:char data;TrieNode* children[26];bool isTerminal;TrieNode(char ch){data ch;for (int i 0; i < 26; i){children[i] NULL;}isTerminal false;} }; class Trie { public:TrieNode* ro…...

dockerfile部署wordpress
1.将容器直接提交成镜像 [rootlocalhost ~]# docker commit 8ecc7f6b9c12 nginx:1.1 sha256:9a2bb94ba6d8d952527df616febf3fbc8f842b3b9e28b7011b50c743cd7b233b [rootlocalhost ~]# docker images REPOSITORY TAG IMAGE ID CREATED SIZE nginx …...

CSS(二)——CSS 背景
CSS 背景 CSS 背景属性用于定义HTML元素的背景。 CSS 背景属性 Property描述background简写属性,作用是将背景属性设置在一个声明中。background-attachment背景图像是否固定或者随着页面的其余部分滚动。background-color设置元素的背景颜色。background-image把…...

开机出现grub无法进入系统_电脑开机出现grub解决方法
最近有小伙伴问我电脑开机出现grub无法进入系统怎么回事?电脑开机出grub的情况有很多,电脑上安装了Linux和Win10双系统,但是由于格式化删除了Linux之后,结果win10开机了之后,直接显示grub>,无法…...

uboot 设置bootargs配置内核网络挂载根文件系统
uboot 设置bootargs配置内核网络挂载根文件系统 uboot设置bootargs env set bootargs "mem256M consolettyAMA0,115200 root/dev/nfs init/linuxrc nfsrootnfs主机地址:nfs路径/busybox/rootfs_glibc_arm64,prototcp rw nfsvers3 rootwait ip板子地址:nfs主机地址:网关:2…...

Vue3+.NET6前后端分离式管理后台实战(三十一)
1,Vue3.NET6前后端分离式管理后台实战(三十一)...

22集 如何minimax密钥和groupid-《MCU嵌入式AI开发笔记》
22集 如何获取minimax密钥和groupid-《MCU嵌入式AI开发笔记》 minimax密钥获取 https://www.minimaxi.com/platform 进入minimax网站,注册登录后,进入“账户管理”, 然后再点击“接口密钥”,然后再点击“创建新的密钥”。 之…...
决策树的概念
决策树的概念 决策树是一种监督学习算法,主要用于分类任务。它通过构建一棵树结构模型来进行预测,其中每个内部节点表示一个特征属性上的判断条件,每条边代表一个判断结果对应的分支,而叶节点则代表最终的类别标签。 应用领域 …...

C++《类和对象》(中)
一、 类的默认成员函数介绍二、构造函数 构造函数名与类同名内置类型与自定义类型析构函数拷贝构造函数 C《类和对象》(中) 一、 类的默认成员函数介绍 默认成员函数就是⽤⼾没有显式实现,编译器会⾃动⽣成的成员函数称为默认成员函数。 那么我们主要学习的是1&…...
SpringBoot中JSR303校验
JSR是 Java EE 的一种标准,用于基于注解的对象数据验证。在Spring Boot应用中,你可以通过添加注解直接在POJO类中声明验证规则。这样可以确保在使用这些对象进行操作之前,它们满足业务规则。个人认为非常有用的,因为它减少了代码中…...

图像数据增强方法概述
图像数据增强方法概述 1. 什么是图像数据增强技术?2. 图像数据增强技术分类2.1 几何变换Python 示例代码 2.2 颜色变换2.3 噪声添加 3. 参考文献 1. 什么是图像数据增强技术? 基础概念:图像增强技术是计算机视觉和图像处理领域中的一个关键技术,主要用…...

【学习笔记】无人机系统(UAS)的连接、识别和跟踪(五)-无人机跟踪
目录 引言 5.3 无人机跟踪 5.3.1 无人机跟踪模型 5.3.2 无人机位置报告流程 5.3.3 无人机存在监测流程 引言 3GPP TS 23.256 技术规范,主要定义了3GPP系统对无人机(UAV)的连接性、身份识别、跟踪及A2X(Aircraft-to-Everyth…...

分享从零开始学习网络设备配置--任务6.1 实现计算机的安全接入
项目描述 随着网络技术的发展和应用范围的不断扩大,网络已经成为人们日常生活中必不可少的一部分。园区网作为给终端用户提供网络接入和基础服务的应用环境,其存在的网络安全隐患不断显现出来,如非人为的或自然力造成的故障、事故;…...

双向链表(C语言版)
1. 双向链表的结构 注意:这里的“带头”跟单链表的“头结点”是两个概念,实际上在单链表阶段称呼不太严谨,但是为了更好地理解就直接称为单链表的头结点。带头链表里的头结点,实际为“哨兵位”,哨兵位结点不存储任何有…...

【算法/学习】前缀和差分
前缀和&&差分目录 1. 前缀和的概念及作用 🌈概念 🌈用途 🌙一维前缀和 🌙二维前缀和 2. 差分的概念及用途 🌈概念: 🌈用途 🌙一维差分 🌙二维差分 1. …...
idea Project 不显示文件和目录
idea Project 不显示文件和目录 File - Close Project - 重新打开项目即可删除.idea文件夹,重新打开项目即可。 原因分析: 可能与使用不同ide例如java、python打开同一项目有关 参考: https://blog.csdn.net/hgnuxc_1993/article/details/132595900 解决打开IDE…...

Linux--Socket编程预备
目录 1. 理解源 IP 地址和目的 IP 地址 2.端口号 2.1端口号(port)是传输层协议的内容 2.2端口号范围划分 2.3理解 "端口号" 和 "进程 ID" 2.4理解 socket 3.传输层的典型代表 3.1认识 TCP 协议 3.2认识 UDP 协议 4. 网络字节序 5. socket 编程接…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...

tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...