AV1技术学习:Transform Coding
对预测残差进行变换编码,去除潜在的空间相关性。VP9 采用统一的变换块大小设计,编码块中的所有的块共享相同的变换大小。VP9 支持 4 × 4、8 × 8、16 × 16、32 × 32 四种正方形变换大小。根据预测模式选择由一维离散余弦变换 (DCT) 和非对称离散正弦变换 (ADST) 核组合构成的一组可分离的二维变换类型。AV1继承了VP9中的变换编码方案,并在变换块大小和变换核方面扩展了其灵活性。
一、Transform Block Size
AV1 将最大变换块大小扩展到 64 × 64。最小变换块大小仍然是 4×4。此外,还支持 N × N/2、N/2 × N、N × N/4、N/4 × N 的矩形变换块大小。
AV1 对所有的帧间编码块采用递归变换块划分方法,捕获局部固定区域,提高变换编码效率。
初始变换块大小与编码块大小匹配,除非编码块大小大于64 × 64,在这种情况下,使用 64 × 64 变换块大小。对于亮度分量,最多允许划分两次。N × N、N × N/2、N × N/4编码块的递归划分规则如下图所示。

帧内编码块继承了统一的变换块大小方法,即所有变换块具有相同的大小。与帧间编码的情况类似,最大变换块大小与编码块大小相匹配,并且对于亮度可以向下划分两次。方形和矩形编码块大小的可用选项如下图所示。

色度分量在统计上的变化要小得多。因此,变换块尺寸设置为使用可用最大变换块尺寸。
二、Transform Kernels
和 VP9 中每个编码块只有一个变换核类型不同,AV1允许每个变换块可以独立选择自己的变换核。将二维可分离变换核扩展为四个一维变换核的组合:DCT、ADST、flipped ADST (FLIPADST)和 identity transform (IDTX),得到16个二维变换核。FLIPADST 是 ADST 变换核的反转。变换核的选择是基于统计和适应各种边界条件。DCT核被广泛应用于信号压缩,并且近似于一致相关数据的最优线性变换 Karhunen-Loeve 变换(KLT)。另一方面,ADST 近似于假设单侧平滑的 KLT,因此适合编码一些帧内预测残差。类似地,FLIPADST 从另一端捕获单侧平滑。此外 IDTX 可以适应在块中包含尖锐变换并且DCT和ADST都无效的情况。此外,IDTX与其他一维变换相结合,提供了一维变换本身,因此可以更好地压缩残差中的水平和垂直模式。下图给出了维度 N = 8 时四个一维变换核对应的波形。

即使使用 SIMD ,逆变换也占解码器计算成本的很大一部分。蝶形结构允许在普通矩阵乘法上大幅度减少乘法运算,即从O(N2)减少到O(NlogN),其中N是变换维数。因此,它非常适合大的变换块大小。注意,由于推导的原始 ADST 无法对蝶形结构进行分解,因此 AV1 在变换块大小为 8 × 8 及以上时采用了和图24所示的 ADST 的变体。
当变换块大小较大时,边界效应不明显,此时所有正弦变换的变换编码增益基本收敛。因此只有 DCT 和 IDTX 用于尺寸为32 × 32及以上的变换块。
相关文章:
AV1技术学习:Transform Coding
对预测残差进行变换编码,去除潜在的空间相关性。VP9 采用统一的变换块大小设计,编码块中的所有的块共享相同的变换大小。VP9 支持 4 4、8 8、16 16、32 32 四种正方形变换大小。根据预测模式选择由一维离散余弦变换 (DCT) 和非对称离散正弦变换 (ADS…...
Git操作指令
Git操作指令 一、安装git 1、设置配置信息: # global全局配置 git config --global user.name "Your username" git config --global user.email "Your email"2、查看git版本号 git -v # or git --version3、查看配置信息: git…...
CSS 创建:从入门到精通
CSS 创建:从入门到精通 CSS(层叠样式表)是网页设计中不可或缺的一部分,它用于控制网页的布局和样式。本文将详细介绍CSS的创建过程,包括基本概念、语法结构、选择器、样式属性以及如何将CSS应用到HTML中。无论您是初学者还是有经验的开发者,本文都将为您提供宝贵的信息。…...
Windows 11 系统对磁盘进行分区保姆级教程
Windows 11磁盘分区 磁盘分区是将硬盘驱动器划分为多个逻辑部分的过程,每个逻辑部分都可以独立使用和管理。在Windows 11操作系统中进行磁盘分区主要有以下几个作用和意义: 组织和管理数据:分区可以帮助用户更好地组织他们的数据,…...
探索WebKit的CSS盒模型:深入理解Web布局的基石
探索WebKit的CSS盒模型:深入理解Web布局的基石 在Web开发的世界中,CSS盒模型(Box Model)是构建网页布局的核心原理。WebKit,作为Safari浏览器的渲染引擎,对CSS盒模型有着深入而精确的支持。本文将带你深入…...
c++初阶知识——string类详解
目录 前言: 1.标准库中的string类 1.1 auto和范围for auto 范围for 1.2 string类常用接口说明 1.string类对象的常见构造 1.3 string类对象的访问及遍历操作 1.4. string类对象的修改操作 1.5 string类非成员函数 2.string类的模拟实现 2.1 经典的string…...
php接口返回的json字符串,json_decode()失败,原来是多了红点
问题: 调用某个接口返回的json,json_decode()失败,返回数据为null, echo json_last_error();返回错误码 4 经过多次调试发现:多出来一个红点,预览是看不到的。 解决:要去除BOM头部 $resul…...
Python3网络爬虫开发实战(2)爬虫基础库
文章目录 一、urllib1. urlparse 实现 URL 的识别和分段2. urlunparse 用于构造 URL3. urljoin 用于两个链接的拼接4. urlencode 将 params 字典序列化为 params 字符串5. parse_qs 和 parse_qsl 用于将 params 字符串反序列化为 params 字典或列表6. quote 和 unquote 对 URL的…...
el-image预览图片点击遮盖处关闭预览
预览关闭按钮不明显 解决方式: 1.修改按钮样式明显点: //el-image 添加自定义类名,下文【test-image】代指 .test-image .el-icon-circle-close{ color:#fff; font-size:20px; ...改成很明显的样式 }2.使用事件监听,监听当前遮…...
基于Neo4j将知识图谱用于检索增强生成:Knowledge Graphs for RAG
Knowledge Graphs for RAG 本文是学习https://www.deeplearning.ai/short-courses/knowledge-graphs-rag/这门课的学习笔记。 What you’ll learn in this course Knowledge graphs are used in development to structure complex data relationships, drive intelligent sea…...
康康近期的慢SQL(oracle vs 达梦)
近期执行的sql,哪些比较慢? 或者健康检查时搂一眼状态 oracle: --最近3天内的慢sql set lines 200 pages 100 col txt for a65 col sql_id for a13 select a.sql_id,a.cnt,a.pctload,b.sql_text txt from (select * from (select sql_id,co…...
探索 GPT-4o mini:成本效益与创新的双重驱动
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...
2.6基本算法之动态规划2989:糖果
描述 由于在维护世界和平的事务中做出巨大贡献,Dzx被赠予糖果公司2010年5月23日当天无限量糖果免费优惠券。在这一天,Dzx可以从糖果公司的N件产品中任意选择若干件带回家享用。糖果公司的N件产品每件都包含数量不同的糖果。Dzx希望他选择的产品包含的糖…...
12.顶部带三角形的边框 CSS 关键字 currentColor
顶部带三角形的边框 创建一个在顶部带有三角形的内容容器。 使用 ::before 和 ::after 伪元素创建两个三角形。两个三角形的颜色应分别与容器的 border-color 和容器的 background-color 相同。一个三角形(::before)的 border-width 应比另一个(::after)宽 1px,以起到边框的作…...
Llama中模块参数大小
LLama2中,流程中数据大小的变换如下 Transformer模块 第一次输入,进行prefill,输入x维度为[1, 8, 4096] 1. 构建wq,wk,wv,wo,尺寸均为[4096,4096], 与x点乘,得到xq, xk, xv 2. 构建KV cache, 尺寸为 [b…...
Modbus转EtherCAT网关将Modbus协议的数据格式转换为EtherCAT协议
随着工业自动化技术的快速发展,不同通信协议之间的互操作性变得越来越重要。Modbus作为一种广泛使用的串行通信协议,与以太网为基础的EtherCAT协议之间的转换需求日益增长。本文将从网关功能、硬件设计、性能以及应用案例来介绍这款Modbus转EtherCAT网关…...
【开发实战】QT5 + OpenCV4 开发环境配置应用演示
前言 作为深度学习算法工程师,必须要掌握应用开发技能吗?搞工程肯定是必须要会界面开发,QT就是一个很不错的选择。本文以QT5.15 OpenCV4.8 OpenVINO2023为例,搭建应用开发环境,演示深度学习模型的QT应用案例。 开发…...
“微软蓝屏”事件暴露的网络安全问题及应对策略
“微软蓝屏”事件暴露了网络安全哪些问题? 近日,一次由微软视窗系统软件更新引发的全球性“微软蓝屏”事件,不仅成为科技领域的热点新闻,更是一次对全球IT基础设施韧性与安全性的深刻检验。这次事件,源于美国电脑安全技…...
白骑士的PyCharm教学基础篇 1.3 调试与运行
系列目录 上一篇:白骑士的PyCharm教学基础篇 1.2 PyCharm基本操作 配置与调试环境 配置调试环境 选择解释器 在 PyCharm 中选择正确的 Python 解释器:依次点击 “File” -> “Settings” -> “Project: [项目名]” -> “Project Interpret…...
爬虫学习1:初学者简单了解爬虫的基本认识和操作(详细参考图片)
爬虫 定义:爬虫(Web Crawler 或 Spider)是一种自动访问互联网上网页的程序,其主要目的是索引网页内容,以便搜索引擎能够快速检索到相关信息。以下是爬虫的一些关键特性和功能: 自动化访问:爬虫能…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
