当前位置: 首页 > news >正文

LLaMA模型量化方法优化:提高性能与减小模型大小

LLaMA模型量化方法优化:提高性能与减小模型大小

  • LLaMA模型量化方法优化:提高性能与减小模型大小
    • 引言
    • 新增量化方法
    • 性能评估
      • 7B模型
      • 13B模型
    • 结果分析
    • 结论

LLaMA模型量化方法优化:提高性能与减小模型大小

引言

在大型语言模型(LLM)的应用中,模型大小和推理速度一直是关键的挑战。最近,一项针对LLaMA模型的优化工作提出了一系列新的量化方法,旨在在保持模型性能的同时显著减小模型大小。本文将详细介绍这些新的量化技术及其带来的性能提升。

新增量化方法

该优化工作主要新增了以下几种量化类型:

  1. GGML_TYPE_Q2_K: 2比特量化,有效使用2.5625位/权重
  2. GGML_TYPE_Q3_K: 3比特量化,有效使用3.4375位/权重
  3. GGML_TYPE_Q4_K: 4比特量化,有效使用4.5位/权重
  4. GGML_TYPE_Q5_K: 5比特量化,有效使用5.5位/权重
  5. GGML_TYPE_Q6_K: 6比特量化,有效使用6.5625位/权重
  6. GGML_TYPE_Q8_K: 8比特量化,主要用于量化中间结果

基于这些基本量化类型,还定义了一系列"量化混合"方案,如LLAMA_FTYPE_MOSTLY_Q2_K、LLAMA_FTYPE_MOSTLY_Q3_K_S等,针对模型的不同部分采用不同的量化方法。

性能评估

研究者对7B和13B两种规模的LLaMA模型进行了详细的性能评估。评估指标包括困惑度(perplexity)、模型文件大小和单个token的推理时间。以下是部分结果:

7B模型

量化方法困惑度文件大小推理时间(ms/token, RTX 4080)
F165.906613.0G60
Q2_K6.77642.67G15.5
Q3_K_M6.15033.06G17.0
Q4_K_S6.02153.56G15.5
Q5_K_S5.94194.33G16.7
Q6_K5.91105.15G18.3

13B模型

量化方法困惑度文件大小推理时间(ms/token, RTX 4080)
F165.254325.0G-
Q2_K5.85455.13G25.3
Q3_K_M5.44985.88G29.3
Q4_K_S5.34046.80G26.2
Q5_K_S5.27858.36G28.6
Q6_K5.25689.95G30.0

结果分析

  1. 模型大小与性能权衡:新的量化方法在显著减小模型大小的同时,能够保持较好的性能。例如,7B模型的Q4_K_S量化方法将模型大小减小到原来的27%,同时困惑度仅增加2%。

  2. 量化精度与性能关系:随着量化位数的增加,模型性能逐渐接近原始F16模型。6比特量化(Q6_K)的困惑度已经非常接近F16模型,相对误差在0.1%以内。

  3. 推理速度:量化后的模型普遍能够获得更快的推理速度。以7B模型为例,Q4_K_S量化方法在RTX 4080上的推理速度比F16模型快近4倍。

  4. 模型规模对量化效果的影响:有趣的是,相对量化误差并不随着基础模型权重数量的增加而减小。13B模型似乎更适合量化,但30B和65B模型的相对量化误差又回到了7B模型的水平。

结论

这项研究为LLaMA模型提供了一系列新的量化选择,能够在不同的硬件资源限制下实现最佳性能。例如,2比特量化的30B模型可以在16GB显存的RTX 4080 GPU上运行,而其他版本则无法加载,这极大地提升了推理性能。

这些新的量化方法为大型语言模型的实际应用提供了更多可能性,使得在有限的计算资源下也能获得接近原始模型的性能。未来的研究可能会进一步优化这些量化技术,或探索它们在其他类型的神经网络中的应用。

reference:

  • https://github.com/ggerganov/llama.cpp/pull/1684
  • https://github.com/ggerganov/llama.cpp/discussions/2094

相关文章:

LLaMA模型量化方法优化:提高性能与减小模型大小

LLaMA模型量化方法优化:提高性能与减小模型大小 LLaMA模型量化方法优化:提高性能与减小模型大小引言新增量化方法性能评估7B模型13B模型 结果分析结论 LLaMA模型量化方法优化:提高性能与减小模型大小 引言 在大型语言模型(LLM)的应用中,模型大小和推理速度一直是关键的挑战。…...

前端CSS实现卡片抽奖效果

引言 在网页设计中,互动元素能够显著提升用户体验,吸引用户的注意力。其中,卡片抽奖效果常用于营销活动、游戏或娱乐场景,通过随机展示不同的卡片来增加趣味性和参与度。本文将详细介绍如何使用HTML和CSS来实现一个简单的卡片抽奖…...

Java在for循环中修改集合

前天看到一篇文章什么?for循环也会出问题?,里面涉及到在for循环中修改集合,想起来自己刚入行的时候就碰到过类似的问题,于是复现了一下文章中的问题,并试验了其它在循环中修改集合的方法。 底层原理参考什…...

Java小白入门到实战应用教程-运算符详解

Java小白入门到实战应用教程-运算符 上节回顾 在上节的内容中我们了解了变量和基本数据类型的内容,现在回顾一下上节课的内容。 声明变量的语法为: 数据类型 变量名; 其中在java中一共有8中基本数据类型,分别是:b…...

secureCRT同时在所有已打开窗口执行命令、mac-os下使用的SecureCRT版本 以及 SecureCRT一段时间不操作没有响应的问题

一、secureCRT命令行工具一次性同时在所有已打开窗口执行命令 公司的服务器比较多,最近因为opcache,上线发布后,需要重启所有的WEB服务器上的php。目前使用的jenkins发布,不过账号安全问题,给jenkins的账号权限受限不能…...

增材制造与智能制造关系

在撰写的增材制造技术与装备书籍中有着明确的描述,增材制造是智能制造的典型范例,是智能制造“类”的实例化过程。这种借助于计算机编程面向对象思想的解释可以更全面的理解增材制造和智能制造的关系。增材制造实例具备了智能制造类的属性,智…...

Google Test 学习笔记(简称GTest)

文章目录 一、介绍1.1 介绍1.2 教程 二、使用2.1 基本使用2.1.1 安装GTest (下载和编译)2.1.2 编写测试2.1.3 运行测试2.1.4 高级特性2.1.5 调试和分析 2.2 源码自带测试用例2.3 TEST 使用2.3.1 TestCase的介绍2.3.2 TEST宏demo1demo2 2.3.3 TEST_F宏2.3…...

不可变集合

定义:就是集合中的内容不可以被修改。 如何获取不可变集合? List、Set、Map类中提供的静态方法of可用来获取不可变集合。 特点:一旦创建完成只可以进行查询,不可以增删改。 细节:Map集合中的of方法只能添加10个键值…...

景区AR导航营销系统:技术解决方案与实施效益分析

随着旅游市场的竞争日益激烈,景区需要不断创新以吸引游客。景区 AR 导航将虚拟画面与现实场景相结合,为游客提供了更加直观、生动的导航服务。对于景区而言,这一创新技术无疑是吸引游客目光、提升景区知名度的有力武器。通过独特的 AR 导航体…...

MATLAB的基础知识

matlab的基本小常识 1. 在每行语句后面加上英文分号表示不在命令行窗口显示运行结果。 a 3; a 5 2. 多行注释快捷键,CTRLR。 3. 取消多行注释,CTRLT。 4. 清空工作区的所有变量使用clear。 5. 清空命令行窗口的所有变量使用clc。 6. clc和clear一起使…...

Redis-高级实战案例

文章目录 Redis集群崩溃时如何保证秒杀系统高可用1. 冗余与备份2. 故障检测与自动切换3. 降级策略4. 数据一致性5. 客户端缓存6. 异常处理与通知7. 测试与演练8. 服务降级与回滚Redis主从切换导致库存同步异常以及超卖问题主从切换导致的库存同步异常原因:解决方案:秒杀链路中…...

d3d12.dll 文件缺失如何解决?五种修复丢失问题的方法

d3d12.dll 文件缺失如何解决?它为什么会不见呢?今天,我们将探讨 d3d12.dll 文件的重要性、原因以及丢失时的解决策略。本文将全面介绍 d3d12.dll 文件,并提供五种修复丢失问题的方法。 d3d12.dll文件是什么的详细介绍 d3d12.dll …...

Linux下如何设置系统定时任务

在Linux系统中,用户可以使用cron工具来设置定时任务。cron是一个守护进程,用于在指定的时间间隔执行指定的命令或脚本。下面是在Linux系统中设置系统定时任务的步骤。 使用crontab命令编辑定时任务列表: crontab -e该命令会打开一个文本编辑…...

【React】JSX 实现列表渲染

文章目录 一、基础语法1. 使用 map() 方法2. key 属性的使用 二、常见错误和注意事项1. 忘记使用 key 属性2. key 属性的选择 三、列表渲染的高级用法1. 渲染嵌套列表2. 条件渲染列表项3. 动态生成组件 四、最佳实践 在 React 开发中,列表渲染是一个非常常见的需求。…...

写一个简单的兼容GET/POST请求的登录接口

本文目录 安装JDK17安装或者更新Intelij Idea 2024SpringBoot生成项目压缩包下载maven,idea添加maven写POST接口浏览器访问GET接口PostMan安装及访问POST接口 安装JDK17 参考:https://blog.csdn.net/tiehou/article/details/129575138 安装或者更新Int…...

【好玩的经典游戏】Docker环境下部署赛车小游戏

【好玩的经典游戏】Docker环境下部署赛车小游戏 一、小游戏介绍1.1 小游戏简介1.2 项目预览二、本次实践介绍2.1 本地环境规划2.2 本次实践介绍三、本地环境检查3.1 安装Docker环境3.2 检查Docker服务状态3.3 检查Docker版本3.4 检查docker compose 版本四、构建容器镜像4.1 下…...

物理机 gogs+jenkins+sonarqube 实现CI/CD

一、部署gogs_0.11.91_linux_amd64.tar.gz gogs官网下载&#xff1a;https://dl.gogs.io/ yum -y install mariadb-serversystemctl start mariadbsystemctl enable mariadbuseradd gittar zxvf gogs_0.11.91_linux_amd64.tar.gzcd gogsmysql -u root -p < scripts/mysql.…...

前端表格解析方法

工具类文件 // fileUtils.tsimport { ref } from vue; import * as xlsx from xlsx;interface RowData {[key: string]: any; }export const tableData ref<RowData[]>([]);export async function handleFileSelect(url: string): Promise<void> {try {const res…...

Leetcode 3227. Vowels Game in a String

Leetcode 3227. Vowels Game in a String 1. 解题思路2. 代码实现 题目链接&#xff1a;3227. Vowels Game in a String 1. 解题思路 这一题稍微分析一下之后就会发现&#xff0c;这个游戏有且只有一种情况Bob才能够赢&#xff0c;即原始字符串当中不存在元音字母的情况&…...

树莓派4B从装系统raspbian到vscode远程编程(python)

1、写在前面 前面用的一直是Ubuntu系统&#xff0c;但是遇到一个奇葩的问题&#xff1a; 北通手柄在终端可以正常使用&#xff0c;接收到数据 但在python程序中使用pygame库初始化时总是报错&#xff1a;Invalid device number&#xff0c;检测不到手柄 经过n次重装系统&am…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问&#xff08;基础概念问题&#xff09; 1. 请解释Spring框架的核心容器是什么&#xff1f;它在Spring中起到什么作用&#xff1f; Spring框架的核心容器是IoC容器&#…...

Xela矩阵三轴触觉传感器的工作原理解析与应用场景

Xela矩阵三轴触觉传感器通过先进技术模拟人类触觉感知&#xff0c;帮助设备实现精确的力测量与位移监测。其核心功能基于磁性三维力测量与空间位移测量&#xff0c;能够捕捉多维触觉信息。该传感器的设计不仅提升了触觉感知的精度&#xff0c;还为机器人、医疗设备和制造业的智…...

【安全篇】金刚不坏之身:整合 Spring Security + JWT 实现无状态认证与授权

摘要 本文是《Spring Boot 实战派》系列的第四篇。我们将直面所有 Web 应用都无法回避的核心问题&#xff1a;安全。文章将详细阐述认证&#xff08;Authentication) 与授权&#xff08;Authorization的核心概念&#xff0c;对比传统 Session-Cookie 与现代 JWT&#xff08;JS…...

论文阅读:Matting by Generation

今天介绍一篇关于 matting 抠图的文章&#xff0c;抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法&#xff0c;已经有很多的工作和这个任务相关。这两年 diffusion 模型很火&#xff0c;大家又开始用 diffusion 模型做各种 CV 任务了&am…...

规则与人性的天平——由高考迟到事件引发的思考

当那位身着校服的考生在考场关闭1分钟后狂奔而至&#xff0c;他涨红的脸上写满绝望。铁门内秒针划过的弧度&#xff0c;成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定"&#xff0c;构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...