当前位置: 首页 > news >正文

C++多线程编程中的锁详解

在现代软件开发中,多线程编程是提升应用程序性能和响应能力的重要手段。然而,多线程编程也带来了数据竞争和死锁等复杂问题。为了确保线程间的同步和共享数据的一致性,C++标准库提供了多种锁机制。

1. std::mutex

std::mutex是最基础的互斥锁,用于保护共享数据,防止多个线程同时访问该数据。

#include <iostream>
#include <thread>
#include <mutex>std::mutex mtx;void print_thread_id(int id) {mtx.lock();std::cout << "Thread " << id << std::endl;mtx.unlock();
}int main() {std::thread t1(print_thread_id, 1);std::thread t2(print_thread_id, 2);t1.join();t2.join();return 0;
}

在上述代码中,mtx.lock()mtx.unlock()分别用于加锁和解锁,确保同一时刻只有一个线程可以访问临界区(std::cout操作)。

2. std::recursive_mutex

std::recursive_mutex允许同一线程多次获得同一锁,而不会导致死锁。适用于递归调用中需要加锁的场景。

#include <iostream>
#include <thread>
#include <mutex>std::recursive_mutex rec_mtx;void recursive_function(int count) {if (count <= 0) return;rec_mtx.lock();std::cout << "Count: " << count << std::endl;recursive_function(count - 1);rec_mtx.unlock();
}int main() {std::thread t(recursive_function, 5);t.join();return 0;
}

3. std::timed_mutex

std::timed_mutex支持尝试在一定时间内获取锁。这在避免死锁和提高程序响应性方面很有用。

#include <iostream>
#include <thread>
#include <mutex>
#include <chrono>std::timed_mutex tmtx;void try_lock_for_example() {if (tmtx.try_lock_for(std::chrono::seconds(1))) {std::cout << "Lock acquired" << std::endl;std::this_thread::sleep_for(std::chrono::seconds(2));tmtx.unlock();} else {std::cout << "Failed to acquire lock" << std::endl;}
}int main() {std::thread t1(try_lock_for_example);std::thread t2(try_lock_for_example);t1.join();t2.join();return 0;
}

4. std::recursive_timed_mutex

std::recursive_timed_mutex结合了std::recursive_mutexstd::timed_mutex的特性

#include <iostream>
#include <thread>
#include <mutex>
#include <chrono>std::recursive_timed_mutex rtmtx;void recursive_timed_function(int count) {if (count <= 0) return;if (rtmtx.try_lock_for(std::chrono::seconds(1))) {std::cout << "Count: " << count << std::endl;recursive_timed_function(count - 1);rtmtx.unlock();} else {std::cout << "Failed to acquire lock" << std::endl;}
}int main() {std::thread t(recursive_timed_function, 5);t.join();return 0;
}

5. std::shared_mutex(C++17引入)

std::shared_mutex允许多个线程同时读取共享数据,但只允许一个线程写入数据。这种机制适用于读多写少的场景。

#include <iostream>
#include <thread>
#include <shared_mutex>std::shared_mutex smtx;void read_function() {smtx.lock_shared();std::cout << "Reading data" << std::endl;smtx.unlock_shared();
}void write_function() {smtx.lock();std::cout << "Writing data" << std::endl;smtx.unlock();
}int main() {std::thread t1(read_function);std::thread t2(read_function);std::thread t3(write_function);t1.join();t2.join();t3.join();return 0;
}

6. std::shared_timed_mutex(C++14引入)

std::shared_timed_mutex结合了std::shared_mutexstd::timed_mutex的特性。

#include <iostream>
#include <thread>
#include <shared_mutex>
#include <chrono>std::shared_timed_mutex stmtx;void shared_timed_read_function() {if (stmtx.try_lock_shared_for(std::chrono::seconds(1))) {std::cout << "Reading data" << std::endl;std::this_thread::sleep_for(std::chrono::seconds(2));stmtx.unlock_shared();} else {std::cout << "Failed to acquire shared lock" << std::endl;}
}void shared_timed_write_function() {if (stmtx.try_lock_for(std::chrono::seconds(1))) {std::cout << "Writing data" << std::endl;std::this_thread::sleep_for(std::chrono::seconds(2));stmtx.unlock();} else {std::cout << "Failed to acquire exclusive lock" << std::endl;}
}int main() {std::thread t1(shared_timed_read_function);std::thread t2(shared_timed_read_function);std::thread t3(shared_timed_write_function);t1.join();t2.join();t3.join();return 0;
}

7. std::lock_guard

std::lock_guard提供一种异常安全的方式来管理锁的生命周期,通常用于自动解锁。

#include <iostream>
#include <thread>
#include <mutex>std::mutex mtx;void lock_guard_example() {std::lock_guard<std::mutex> lock(mtx);std::cout << "Lock acquired using lock_guard" << std::endl;// mtx is automatically unlocked when lock goes out of scope
}int main() {std::thread t(lock_guard_example);t.join();return 0;
}

8. std::unique_lock

std::unique_lockstd::lock_guard更加灵活,支持延迟加锁、解锁和重新加锁。

#include <iostream>
#include <thread>
#include <mutex>std::mutex mtx;void unique_lock_example() {std::unique_lock<std::mutex> lock(mtx);std::cout << "Lock acquired using unique_lock" << std::endl;lock.unlock();std::cout << "Lock released" << std::endl;lock.lock();std::cout << "Lock reacquired" << std::endl;
}int main() {std::thread t(unique_lock_example);t.join();return 0;
}

9. std::shared_lock(C++17引入)

std::shared_lock用于管理共享互斥量(std::shared_mutexstd::shared_timed_mutex),提供了一种简单的方式来处理读锁。

#include <iostream>
#include <thread>
#include <shared_mutex>std::shared_mutex smtx;void shared_lock_example() {std::shared_lock<std::shared_mutex> lock(smtx);std::cout << "Shared lock acquired" << std::endl;
}int main() {std::thread t1(shared_lock_example);std::thread t2(shared_lock_example);t1.join();t2.join();return 0;
}

结论

C++标准库提供了多种锁机制,帮助开发者在多线程环境中确保数据的一致性和线程的同步。根据具体的应用场景选择合适的锁,可以有效地避免数据竞争和死锁问题,从而编写出高效、安全的多线程程序。

相关文章:

C++多线程编程中的锁详解

在现代软件开发中&#xff0c;多线程编程是提升应用程序性能和响应能力的重要手段。然而&#xff0c;多线程编程也带来了数据竞争和死锁等复杂问题。为了确保线程间的同步和共享数据的一致性&#xff0c;C标准库提供了多种锁机制。 1. std::mutex std::mutex是最基础的互斥锁…...

van-dialog 组件调用报错

报错截图 报错原因 这个警告表明 vue 在渲染页面时遇到了一个未知的自定义组件 <van-dialog>&#xff0c;并且提示可能是由于未正确注册该组件导致的。在 vue 中&#xff0c;当我们使用自定义组件时&#xff0c;需要先在 vue 实例中注册这些组件&#xff0c;以便 vue 能…...

【Django】在vscode中运行调试Django项目(命令及图形方式)

文章目录 命令方式图形方式默认8000端口设置自定义端口 命令方式 python manage.py runserver图形方式 默认8000端口 设置自定义端口...

麦田物语第十三天

系列文章目录 麦田物语第十三天 文章目录 系列文章目录一、实现根据物品详情显示 ItemTooltip1.ItemTooltips脚本编写二、制作 Player 的动画一、实现根据物品详情显示 ItemTooltip 1.ItemTooltips脚本编写 首先创建Scripts->Inventory->UI->ItemTooltip脚本,然后…...

【Git多人协作开发】不同的分支下的多人协作开发模式

目录 0.前言背景 1.开发者1☞完成准备工作&协作开发 1.1查看分支情况 1.2创建本地分支feature-1 1.3三板斧 1.4push推本地分支feature-1到远程仓库 2.开发者2☞完成准备工作&协作开发 2.1创建本地分支feature-2 2.2三板斧 2.2push推送本地feature-2到远程仓库…...

Lua 复数计算器

Lua复数计算器 主要包括复数的加减乘除操作&#xff0c;以及打印 编写复数类 -- ***** 元类 ***** Complex {real 0, imag 0}-- 构造函数 function Complex:new(real, imag)local o o or {}o.real real or 0o.imag imag or 0setmetatable(o, self)self.__index selfr…...

深入MySQL中的IF和IFNULL函数

在数据库查询中&#xff0c;我们经常需要根据条件来决定数据的显示方式。MySQL提供了多种内置函数来帮助我们实现这种条件逻辑&#xff0c;其中IF和IFNULL是两个非常有用的函数。在这篇博客中&#xff0c;我们将深入探讨这两个函数的用法和它们在实际查询中的应用。 IF函数 I…...

AI多模态实战教程:面壁智能MiniCPM-V多模态大模型问答交互、llama.cpp模型量化和推理

一、项目简介 MiniCPM-V 系列是专为视觉-语⾔理解设计的多模态⼤型语⾔模型&#xff08;MLLMs&#xff09;&#xff0c;提供⾼质量的⽂本输出&#xff0c;已发布4个版本。 1.1 主要模型及特性 &#xff08;1&#xff09;MiniCPM-Llama3-V 2.5&#xff1a; 参数规模: 8B性能…...

Docker 搭建Elasticsearch详细步骤

本章教程使用Docker搭建Elasticsearch环境。 一、拉取镜像 docker pull docker.elastic.co/elasticsearch/elasticsearch:8.8.2二、运行容器 docker run -d --name elasticsearch -p 9200:9200 -p 9300:9300 -e "discovery.type=single-n...

mysql中提供的函数

文章目录 1.聚合函数2.字符串函数3.数值函数4.日期函数5.流程函数 MySQL 是一个功能强大的关系型数据库管理系统&#xff0c;其中包含了丰富的内置函数&#xff0c;用于处理各种数据操作和查询。这些函数可以分为多种类型&#xff0c;包括字符串函数、数值函数、日期和时间函数…...

加速下载,揭秘Internet Download Manager2024下载器的威力!

1. Internet Download Manager&#xff08;IDM&#xff09;是一款广受欢迎的下载管理软件&#xff0c;以其强大的下载加速功能和用户友好的界面著称。 IDM马丁正版下载如下: https://wm.makeding.com/iclk/?zoneid34275 idm最新绿色版一键安装包链接&#xff1a;抓紧保存以…...

oracle 宽表设计

Oracle宽表设计主要涉及到数据库表或视图中字段&#xff08;列&#xff09;数量较多的情况。在Oracle 23c及以后的版本中&#xff0c;数据库表或视图中允许的最大列数已增加到4096&#xff0c;这为宽表设计提供了更大的灵活性。以下是对Oracle宽表设计的详细分析&#xff1a; …...

winrar安装好后,鼠标右键没有弹出解压的选项

本来安装挺好的&#xff0c;可以正常使用&#xff0c;有天我把winrar相关的文件挪了个位置&#xff0c;就不能正常使用了。 然后我去应用里面找&#xff0c;找到应用标识了&#xff0c;但是找不到对应的文件夹&#xff08;因为我挪到另外一个文件夹里了&#xff09;。 于是我找…...

数字图像处理笔记(一)---- 图像数字化与显示

系列文章目录 数字图像处理学习笔记&#xff08;一&#xff09;---- 图像数字化与显示 数字图像处理笔记&#xff08;二&#xff09;---- 像素加图像统计特征 数字图像处理笔记&#xff08;三) ---- 傅里叶变换的基本原理 文章目录 系列文章目录前言一、数字图像处理二、图像数…...

Unity UGUI 之 事件接口

本文仅作学习笔记与交流&#xff0c;不作任何商业用途 本文包括但不限于unity官方手册&#xff0c;唐老狮&#xff0c;麦扣教程知识&#xff0c;引用会标记&#xff0c;如有不足还请斧正 本文在发布时间选用unity 2022.3.8稳定版本&#xff0c;请注意分别 1.什么是事件接口&…...

Hadoop、HDFS、MapReduce 大数据解决方案

本心、输入输出、结果 文章目录 Hadoop、HDFS、MapReduce 大数据解决方案前言HadoopHadoop 主要组件的Web UI端口和一些基本信息MapReduceMapReduce的核心思想MapReduce的工作流程MapReduce的优缺点Hadoop、HDFS、MapReduce 大数据解决方案 编辑 | 简简单单 Online zuozuo 地址…...

Dubbo SPI 之负载均衡

1. 背景介绍 在分布式系统中&#xff0c;负载均衡是一项核心技术&#xff0c;旨在将请求合理地分配到多个服务实例上&#xff0c;以提高系统的性能和可靠性。Dubbo 作为一个高性能的 Java RPC 框架&#xff0c;提供了多种负载均衡策略来满足不同的业务需求。本文将深入探讨 Du…...

规范:前后端接口规范

1、前言 随着互联网的高速发展&#xff0c;前端页面的展示、交互体验越来越灵活、炫丽&#xff0c;响应体验也要求越来越高&#xff0c;后端服务的高并发、高可用、高性能、高扩展等特性的要求也愈加苛刻&#xff0c;从而导致前后端研发各自专注于自己擅长的领域深耕细作。 然…...

Python --NumPy库基础方法(2)

NumPy Numpy(Numerical Python) 是科学计算基础库&#xff0c;提供大量科学计算相关功能&#xff0c;比如数据统计&#xff0c;随机数生成等。其提供最核心类型为多维数组类型&#xff08;ndarray&#xff09;&#xff0c;支持大量的维度数组与矩阵运算&#xff0c;Numpy支持向…...

音视频入门基础:H.264专题(15)——FFmpeg源码中通过SPS属性获取视频帧率的实现

音视频入门基础&#xff1a;H.264专题系列文章&#xff1a; 音视频入门基础&#xff1a;H.264专题&#xff08;1&#xff09;——H.264官方文档下载 音视频入门基础&#xff1a;H.264专题&#xff08;2&#xff09;——使用FFmpeg命令生成H.264裸流文件 音视频入门基础&…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

rknn toolkit2搭建和推理

安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 &#xff0c;不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源&#xff08;最常用&#xff09; conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...

CSS 工具对比:UnoCSS vs Tailwind CSS,谁是你的菜?

在现代前端开发中&#xff0c;Utility-First (功能优先) CSS 框架已经成为主流。其中&#xff0c;Tailwind CSS 无疑是市场的领导者和标杆。然而&#xff0c;一个名为 UnoCSS 的新星正以其惊人的性能和极致的灵活性迅速崛起。 这篇文章将深入探讨这两款工具的核心理念、技术差…...

Python异步编程:深入理解协程的原理与实践指南

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 持续学习&#xff0c;不断…...