当前位置: 首页 > news >正文

hhhhh

x = torch.tensor([1.0,0.],[-1.,1.],requires_grad=True)
z = x.pow(2).sum()
z.backward()
x.grad

在这段代码中,我们利用 PyTorch 进行自动求梯度,下面详细解释代码的每一个部分及其在反向传播中的作用。同时,我们也将介绍函数对象和叶子节点的概念。

  1. 创建张量

    x = torch.tensor([[1.0, 0.], [-1., 1.]], requires_grad=True)
    
    • 这里我们创建了一个二维张量 x,其内容是 [[1.0, 0.], [-1., 1.]]
    • 设置 requires_grad=True,意味着我们希望跟踪这个张量的操作,以便进行自动求梯度。PyTorch 记录所有对该张量的操作,以便在反向传播时能够计算出梯度。
    • 此外, x 是一个叶子节点,这是指在计算图的最底层的张量,它是用户直接创建的张量或从其他张量分割而来,不是通过其他张量的操作结果产生的。
  2. 定义计算图的输出

    z = x.pow(2).sum()
    
    • x.pow(2) 是对 x 中的每个元素进行平方运算,生成一个新的张量,这个新张量并不是用户直接创建的,而是通过操作 x 生成,因此它不是叶子节点。
    • 接着,我们调用 .sum(),它会计算所有元素的和,结果保存在 z 中。至此,计算图已经构建完成,PyTorch 知道如何从 z 计算回 x
  3. 反向传播

    z.backward()
    
    • 这一行触发了反向传播过程,计算出 z 相对于 x 的梯度。
    • PyTorch 通过链式法则自动计算每个节点的梯度,其中涉及的操作和节点形成的计算图使得这些计算变得直接。
    • 具体来说,由于 ( z = x 1 2 + x 2 2 + x 3 2 + x 4 2 z = x_1^2 + x_2^2 + x_3^2 + x_4^2 z=x12+x22+x32+x42 ),对每个元素分别求导可得:
      • 对于 ( x 1 = 1.0 x_1 = 1.0 x1=1.0 ),( ∂ z ∂ x 1 = 2 ⋅ x 1 = 2 ⋅ 1.0 = 2 \frac{\partial z}{\partial x_1} = 2 \cdot x_1 = 2 \cdot 1.0 = 2 x1z=2x1=21.0=2 )
      • 对于 ( x 2 = 0.0 x_2 = 0.0 x2=0.0 ),( ∂ z ∂ x 2 = 2 ⋅ x 2 = 2 ⋅ 0.0 = 0 \frac{\partial z}{\partial x_2} = 2 \cdot x_2 = 2 \cdot 0.0 = 0 x2z=2x2=20.0=0 \
      • 对于 ( x 3 = − 1.0 x_3 = -1.0 x3=1.0 ),( ∂ z ∂ x 3 = 2 ⋅ x 3 = 2 ⋅ − 1.0 = − 2 \frac{\partial z}{\partial x_3} = 2 \cdot x_3 = 2 \cdot -1.0 = -2 x3z=2x3=21.0=2 )
      • 对于 ( x 4 = 1.0 x_4 = 1.0 x4=1.0 ),( ∂ z ∂ x 4 = 2 ⋅ x 4 = 2 ⋅ 1.0 = 2 \frac{\partial z}{\partial x_4} = 2 \cdot x_4 = 2 \cdot 1.0 = 2 x4z=2x4=21.0=2 )
  4. 查看梯度

    x.grad
    
    • 这一行返回 x 的梯度,结果应为:tensor([[ 2., 0.], [-2., 2.]])。这对应于从反向传播过程中计算得到的梯度值。
  • 在 PyTorch 中,任何通过运算生成的张量都可以看作是一个函数对象,它们代表了多个操作和计算结果的链表。例如,z 就是一个非叶子节点,它由 x 计算得到,而这些操作形成了一个计算图,这样在计算梯度时,我们就知道如何回溯。

相关文章:

hhhhh

x torch.tensor([1.0,0.],[-1.,1.],requires_gradTrue) z x.pow(2).sum() z.backward() x.grad在这段代码中,我们利用 PyTorch 进行自动求梯度,下面详细解释代码的每一个部分及其在反向传播中的作用。同时,我们也将介绍函数对象和叶子节点的…...

扫雷小游戏纯后端版

package com.wind;import java.util.Random; import java.util.Scanner;public class ResultLei {static Random random new Random();public static void main(String[] args) {boolean end true;while (end) {System.out.println("请输入你选择的难度对应的数字&#…...

RuoYi-Vue-Plus(动态添加移除数据源)

一、添加数据 private final DynamicRoutingDataSource dynamicRoutingDataSource;private final DefaultDataSourceCreator dataSourceCreator;//添加一个dynamic的数据源@GetMapping("createDynamic")public void createDynamic() {DataSourceProperty property =…...

idea启动项目报:the command line via JAR manifest or via a classpath file and rerun.

解决方案 1.打开Edit Configurations,进去编辑,如下: 笔记配置 2.选择Modfiy options,点击Shorten command line 3.在新增的Shorten command line选项中选择JAR manifest或classpath file 4.点击保存后即可...

vue3 + ts中有哪些类型是由vue3提供的?

在 Vue 3 中结合 TypeScript 使用时,Vue 提供了一系列的类型帮助函数和接口,这些类型用于增强 TypeScript 的集成和提供类型安全。以下是一些由 Vue 3 提供的常用 TypeScript 类型: RefType: 用于标注一个 ref 返回的响应式引用类型。Reacti…...

【Linux】远程连接Linux虚拟机(MobaXterm)

【Linux】远程连接Linux虚拟机(MobaXterm) 零、原因 有时候我们在虚拟机中操作Linux不太方便,比如不能复制粘贴,不能传文件等等,我们在主机上使用远程连接软件远程连接Linux虚拟机后可以解决上面的问题。 壹、软件下…...

LeetCode Hot100 生成特殊数字的最少操作

给你一个下标从 0 开始的字符串 num ,表示一个非负整数。 在一次操作中,您可以选择 num 的任意一位数字并将其删除。请注意,如果你删除 num 中的所有数字,则 num 变为 0。 返回最少需要多少次操作可以使 num 变成特殊数字。 如…...

Spring MVC 应用分层

1. 类名使⽤⼤驼峰⻛格,但以下情形例外:DO/BO/DTO/VO/AO 2. ⽅法名、参数名、成员变量、局部变量统⼀使⽤⼩驼峰⻛格 3. 包名统⼀使⽤⼩写,点分隔符之间有且仅有⼀个⾃然语义的英语单词. 常⻅命名命名⻛格介绍 ⼤驼峰: 所有单词⾸字⺟…...

QT--进程

一、进程QProcess QProcess 用于启动和控制外部进程,管理其输入输出流。 使用方法 start():启动一个新进程。setStandardInputFile():将文件作为标准输入。将进程的标准输入(stdin)重定向到指定的文件。换句话说&am…...

凸优化笔记-基本概念

原文 文章目录 最小二乘问题 仿射affine hullaffine dimension 凸集锥集超平面和半空间单纯形整半定锥保凸性的操作透视函数 凸函数的条件1阶判定条件2阶判定条件 Epigraph 外图 m i n i m i z e f 0 ( x ) minimize\ \ \ f_0(x) minimize f0​(x) s u b j e c t t o f i ( …...

1858. 数组查找及替换

问题描述 给定某整数数组和某一整数 b 。 要求删除数组中可以被 b 整除的所有元素,同时将该数组各元素按从小到大排序。如果数组元素数值在 𝐴‘ 到 Z 的 ASCII 之间,替换为对应字母。 元素个数不超过 100,𝑏 在 1 …...

计算机视觉与面部识别:技术、应用与未来发展

引言 在当今数字化时代,计算机视觉技术迅速发展,成为人工智能领域的一个重要分支。计算机视觉旨在让机器理解和解释视觉信息,模拟人类的视觉系统。它在各行各业中发挥着重要作用,从自动驾驶汽车到智能监控系统,再到医疗…...

懒人精灵安卓版纯本地离线文字识别插件

目的 懒人精灵是一款可以模拟鼠标和键盘操作的自动化工具。它可以帮助用户自动完成一些重复的、繁琐的任务,节省大量人工操作的时间。懒人精灵也包含图色功能,识别屏幕上的图像,根据图像的变化自动执行相应的操作。本篇文章主要讲解下更优秀的…...

在线教育数仓项目(数据采集部分1)

文章目录 数据仓库概念项目需求及架构设计项目需求分析系统数据流程设计框架版本选型集群规模估算集群资源规划设计 数据生成模块目标数据页面事件曝光启动播放错误 数据埋点主流埋点方式(了解)埋点数据上报时机埋点数据日志结构 服务器和JDK准备服务器准…...

帕金森病(PD)诊断:三种基于语音的深度学习方法

帕金森病(Parkinson’s disease, PD)是世界上第二大流行的神经退行性疾病,全球影响着超过1000万人,仅次于阿尔茨海默症。人们通常在65岁左右被诊断出患有此病。PD的一些症状包括震颤、肌肉僵硬和运动迟缓。这些症状往往出现在较晚…...

【资料分享】2024钉钉杯大数据挑战赛A题思路解析+代码演示

2024第三届钉钉杯大学生大数据挑战赛今天已经开赛,【A题】思路解析代码,资料预览:...

【优质精选】12节大模型系列教学课程之二:RAG 原理与应用

课程二:RAG 原理与应用 12节大模型系列教学课程之二:RAG 原理与应用 课程详细内容RAG 技术的基础知识RAG 的工作原理RAG 提高生成质量和准确性的原理RAG 在问答系统中的应用RAG 在文本创作中的应用RAG 在其他领域的应用探索RAG 技术的挑战与应对策略RAG …...

vue3前端开发-小兔鲜项目-产品详情基础数据渲染

vue3前端开发-小兔鲜项目-产品详情基础数据渲染!这一次内容比较多,我们分开写。第一步先完成详情页面的基础数据的渲染。然后再去做一下右侧的热门产品的列表内容。 第一步,还是老规矩,先准备好接口函数。方便我们的页面组件拿到对…...

Docker入门指南:Linux系统下的完整安装步骤与常见问题解答

本文以centos7演示。 Docker安装 可参考官方安装文档:Install Docker Engine on CentOS | Docker Docs 一图流: # 移除旧版本docker sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logro…...

Netty实现数据上下行

Netty实现数据上下行 使用LVSNGinxNetty实现数据接入 在数据上行的时候,通过使用车辆唯一标识码(vin)和连接通道绑定 Netty一些配置参数如下: #netty项目使用的端口 server.port8017 #使用启用epoll(在Linux上拥有更好的传输性…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

无法与IP建立连接,未能下载VSCode服务器

如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂&#xff…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...

华为OD机考-机房布局

import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...

FFmpeg:Windows系统小白安装及其使用

一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...

安卓基础(Java 和 Gradle 版本)

1. 设置项目的 JDK 版本 方法1:通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分,设置 Gradle JDK 方法2:通过 Settings File → Settings... (或 CtrlAltS)…...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中,JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作(如 Promise、async/await 等),开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝(r…...