当前位置: 首页 > news >正文

算法竞赛必考算法——动态规划(01背包和完全背包)

动态规划(一)

在这里插入图片描述

目录

  • 动态规划(一)
    • 1.01背包问题
      • 1.1题目介绍
      • 1.2思路一介绍(二维数组)
      • 1.3思路二介绍(一维数组) ==空间优化==
      • 1.4思路三介绍(输入数据优化)
    • 2.完全背包问题
      • 2.1题目描述:
      • 2.2思路一(朴素算法)
      • 2.3思路二(将k优化处理掉)
      • 2.4思路三(优化j的初始条件)
  • 总结

在这里插入图片描述

1.01背包问题

1.1题目介绍

在这里插入图片描述

1.2思路一介绍(二维数组)

在这里插入图片描述

代码如下:

#include<iostream>
#include<algorithm>
using namespace std;const int N=1010;int v[N],w[N]; //v[N]是物品体积 w[N]是物品的价值int f[N][N]; //f[i][j]在体积不超j的前提下,从i个物品中选择最大值int main(){int n,m;cin>>n>>m;for(int i=1;i<=n;i++){cin>>v[i]>>w[i];}for(int i=1;i<=n;i++){for(int j=1;j<=m;j++){f[i][j]=f[i-1][j];if(j>=v[i])//如果我们的背包容量j大于第i个物品的体积,我们在进行决策是否加入第i个物品f[i][j]=max(f[i][j],f[i-1][j-v[i]]+w[i]);}}cout<<f[n][m]<<endl;return 0;}

1.3思路二介绍(一维数组) 空间优化

  为什么可以使用一维数组?

  我们先来看一看01背包问题的状态转移方程,我们可以发现 f[i]只用到了f[i-1],其他的是没有用到的,我们可以用滚动数组来做。
  还有一个原因就是我们在计算f[i] [j]的时候我们只用到了f[i-1] [j]和f[i-1] [j-v[i]],其中j和j-v[i]都是小于等于j的,在j的同一侧,所以我们综合以上两点原因就可以将二维优化到一维,即完成空间优化。

在这里插入图片描述

我们先来将二维和优化后的一维在关键算法代码上进行一下对比:

for(int i = 1; i <= n; i++) for(int j = m; j >= 0; j--){if(j < v[i]) f[i][j] = f[i - 1][j];  // 优化前f[j] = f[j];            // 优化后,该行自动成立,可省略。else    f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);  // 优化前f[j] = max(f[j], f[j - v[i]] + w[i]);                   // 优化后}

实际上,只有当枚举的背包容量 >= v[i] 时才会更新状态,因此我们可以修改循环终止条件进一步优化。

for(int i=1;j<=n;i++)
{for(int j=m;j>=v[i];j--){f[j]=max(f[j],f[j-v[i]]+w[i]);}
}

在这里插入图片描述

#include <iostream>
#include <algorithm>using namespace std;const int N = 1010;int n, m;
int v[N], w[N];
int f[N];int main()
{cin >> n >> m;for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];for (int i = 1; i <= n; i ++ )for (int j = m; j >= v[i]; j -- )f[j] = max(f[j], f[j - v[i]] + w[i]);cout << f[m] << endl;return 0;
}

1.4思路三介绍(输入数据优化)

  我们注意到在处理数据时,我们是一个物品一个物品,一个一个体积的枚举。因此我们可以不必开两个数组记录体积和价值,而是边输入边处理。

#include<bits/stdc++.h>using namespace std;const int MAXN = 1005;
int f[MAXN];  // int main() 
{int n, m;   cin >> n >> m;for(int i = 1; i <= n; i++) {int v, w;cin >> v >> w;      // 边输入边处理for(int j = m; j >= v; j--)f[j] = max(f[j], f[j - v] + w);}cout << f[m] << endl;return 0;
}

在这里插入图片描述

2.完全背包问题

2.1题目描述:

在这里插入图片描述
在这里插入图片描述

2.2思路一(朴素算法)

#include<iostream>
using namespace std;
const int N=1010;
int f[N][N];
int n,m;
int v[N],w[N];
int main()
{cin>>n>>m;for(int i=1;i<=n;i++) cin>>v[i]>>w[i];for(int i=1;i<=n;i++){for(int j=0;j<=m;j++){for(int k=0;k*v[i]<=j;k++){f[i][j]=max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);}}}cout<<f[n][m]<<endl;return 0;
}

上述朴素算法和01背包问题的朴素算法非常相似,但是会超时。所以我们接下来就会对这个算法进行优化处理。

2.3思路二(将k优化处理掉)

在这里插入图片描述

  我们先来分析一下状态转移方程,我们发现方程一和方程二有一定的联系,我们先不看方程一红色圈出来的部分,我们比较方程一黄色的部分和方程二的内容,我们发现方程一就是比方程二每一项多了一个w,那么我们黄色圈出来的部分的最大值也就比方程二的最大值多w,那么我们其实就可以将方程一圈出来黄色的部分进行等价替换,替换成红色方框黄色字体的内容,我们最终得出最下方的结论,其实我们要求得最大值之和两个状态有关,比较它们的最大值即可。

我们发现好像最后的状态转移方程和k并没有关系了,那么我们就干脆去掉k的那次循环

所以我们对核心代码进行了优化:

for(int i = 1 ; i <=n ;i++)
for(int j = 0 ; j <=m ;j++)
{f[i][j] = f[i-1][j];//状态一,即不取第i个物品if(j-v[i]>=0)//判断是否可以加入第i个物品f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);//状态二
}

完整代码如下:

#include<iostream>
using namespace std;
const int N=1010;
int f[N][N];
int n,m;
int v[N],w[N];
int main()
{cin>>n>>m;for(int i=1;i<=n;i++) cin>>v[i]>>w[i];for(int i=1;i<=n;i++){for(int j=0;j<=m;j++){f[i][j]=f[i-1][j];if(j>=v[i]){f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);}}}cout<<f[n][m]<<endl;return 0;
}

我们来比较一个完全背包的核心代码和01背包核心代码的区别:

//01背包问题核心优化后代码
for(int i=1;i<=n;i++)
{for(int j=m;j>=v[i];j--){	f[i][j]=f[i-1][j];if(j>=v[i]){f[i][j]=max(f[i][j],f[i-1][j-v[i]]+w[i]);}}
}
//完全背包问题核心优化后代码
for(int i = 1 ; i <=n ;i++)
for(int j = 0 ; j <=m ;j++)
{f[i][j] = f[i-1][j];//状态一,即不取第i个物品if(j-v[i]>=0)//判断是否可以加入第i个物品f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);//状态二
}

我们发现其实本质也就是一句不同:注意i的下标

在这里插入图片描述

  我们这个i的下标是根据两个不同的背包问题的状态转移方程得出来的,我们01背包问题因为要使用第i-1层的数据,所以我们枚举j的时候只能从后往前枚举,这样做是因为j-v[i]小于j,那么f[j-v[i]]的数据就会被改,那么我们使用的数据其实就是第i层的数据了,不满足状态转移方程,所以我们要从后往前枚举,但是完全背包问题使用的就是第i层的数据,所以不存在从前往后枚举就会在使用前数据就发生意外改变的这种情况,所以就在这个地方这两个核心算法略有差别。

2.4思路三(优化j的初始条件)

这个和01背包问题的优化方法是一样的,就不多赘述了。

核心代码如下:

for(int i = 1 ; i<=n ;i++)for(int j = v[i] ; j<=m ;j++)//注意了,这里的j是从小到大枚举,和01背包不一样{f[j] = max(f[j],f[j-v[i]]+w[i]);}

完整代码如下:

#include<iostream>
using namespace std;
const int N = 1010;
int f[N];
int v[N],w[N];
int main()
{int n,m;cin>>n>>m;for(int i = 1 ; i <= n ;i ++){cin>>v[i]>>w[i];}for(int i = 1 ; i<=n ;i++)for(int j = v[i] ; j<=m ;j++){f[j] = max(f[j],f[j-v[i]]+w[i]);}cout<<f[m]<<endl;
}

总结

  本篇博客主要涉及动态规划背包问题的01背包问题和完全背包问题,给大家分享了实现的思路和代码模板,大家也可以看看yxc的背包九讲,图片转载于yxc,希望对大家有所帮助,后面会持续更新~

相关文章:

算法竞赛必考算法——动态规划(01背包和完全背包)

动态规划(一) 目录动态规划(一)1.01背包问题1.1题目介绍1.2思路一介绍(二维数组)1.3思路二介绍(一维数组) 空间优化1.4思路三介绍(输入数据优化)2.完全背包问题2.1题目描述&#xff1a;2.2思路一(朴素算法)2.3思路二(将k优化处理掉)2.4思路三(优化j的初始条件)总结1.01背包问题…...

基于深度学习的农作物叶片病害检测系统(UI界面+YOLOv5+训练数据集)

摘要&#xff1a;农作物叶片病害检测系统用于智能检测常见农作物叶片病害情况&#xff0c;自动化标注、记录和保存病害位置和类型&#xff0c;辅助作物病害防治以增加产值。本文详细介绍基于YOLOv5深度学习模型的农作物叶片病害检测系统&#xff0c;在介绍算法原理的同时&#…...

QT入门Item Views之QListView

目录 一、QListView界面相关 1、布局介绍 二、代码展示 1、创建模型&#xff0c;导入模型 2、 设置隔行背景色 3、删除选中行 三、源码下载 此文为作者原创&#xff0c;创作不易&#xff0c;转载请标明出处&#xff01; 一、QListView界面相关 1、布局介绍 先看下界面…...

GEE:计算1990-2021年的指数最大值和最小值,并根据最大最小值对每一副影像归一化

本文记录了在GEE平台上计算影像集合中所有像素的最大值和最小值。并且根据该最大最小值对所有影像进行最大最小值归一化。以SAVI为例,记录了主要函数的使用方法和代码。 结果如图所示, 文章目录 一、计算每一副影像的最大值或者最小值,并将最值保存在 List 中二、计算 Lis…...

LeetCode KMP 算法

可以参考https://www.bilibili.com/video/BV1AY4y157yL/kmp 主要做的就是子串匹配&#xff0c;类似C程序的 strstr() 函数记录一下&#xff0c;也防止我自己忘记传统暴力求解算法是源串 ssssssssa 子串 sssa&#xff08;下面暴力求解&#xff09; 先 (子串从 0 位置匹配&#x…...

全面剖析OpenAI发布的GPT-4比其他GPT模型强在哪里

最强的文本生成模型GPT-4一、什么是GPT-4二、GPT-4的能力三、和其他GPT模型比较3.1、增加了图像模态的输入3.2、可操纵性更强3.3、复杂任务处理能力大幅提升3.4、幻觉、安全等局限性的改善3.6、风险和缓解措施改善更多安全特性3.7、可预测的扩展四、与之前 GPT 系列模型比较五、…...

leetcode——26. 删除有序数组中的重复项

文章目录&#x1f428;1. 题目&#x1f3f9;2. 思路&#x1fa83;3. 代码实现&#x1f428;1. 题目 给你一个升序排列的数组nums&#xff0c;请你原地删除重复出现的元素&#xff0c;使每个元素只出现一次&#xff0c;返回删除后数组的新长度。元素的相对顺序应该保持一致。 由…...

基于springboot垃圾分类网站设计实现【毕业论文、源码】

摘要本论文主要论述了如何使用JAVA语言开发一个垃圾分类网站&#xff0c;本系统将严格按照软件开发流程进行各个阶段的工作&#xff0c;采用B/S架构&#xff0c;面向对象编程思想进行项目开发。在引言中&#xff0c;作者将论述垃圾分类网站的当前背景以及系统开发的目的&#x…...

计算机组成原理实验一(完整)

在VC中使用调试功能将下列语句运行的内存存放结果截图&#xff0c;每运行一句需截图一次。 #include<stdio.h> int main() {int a 你的学号末两位-100; //0x&#xff1f;&#xff1f;&#xff1f;&#xff1f;&#xff1f;&#xff1f;&#xff1f;&#xff1f;&#x…...

【SSM】MyBatis(一.基础)

文章目录1.ORM2. 数据库表3. 入门程序3.1 创建项目3.2 开发3.3 一个比较完整规格的mybatis程序3.4 测试案例 junit3.5 对第一个mybatis使用junit测试3.6 集成日志框架logback3.7mybatis工具类编写1.ORM Object(JVM中的Java对象) Relational(关系型数据库) Mapping(映射) mybat…...

LInux指令之文件目录类

文章目录一、帮助指令二、文件目录类ls指令cd指令 &#xff08;切换目录&#xff09;mkdir指令&#xff08;创建目录&#xff09;rmdir指令&#xff08;删除目录&#xff09;touch指令&#xff08;创建空文件&#xff09;cp指令(拷贝文件)rm指令mv指令cat指令(查看)more指令les…...

【c++】:STL中vector的模拟使用及模拟实现

文章目录 前言一.使用库中vector常用接口二.vector的模拟实现总结前言 上一篇我们讲解了STL中的string的使用和模拟实现&#xff0c;这次我们就来讲解STL中的vector&#xff0c;vector相对于string来说模拟实现会难一些&#xff0c;难点在于迭代器失效问题和深浅拷贝问题。 首…...

C++ STL:vector的使用方法及模拟实现

目录 一. vector概述 二. vector接口函数的使用方法和模拟实现 2.1 vector类模板的成员变量 2.2 构造函数的使用和模拟实现 2.2.1 构造函数的使用方法 2.2.2 构造函数的模拟实现 2.3 析构函数的模拟实现 2.4 赋值运算符重载函数的使用和模拟实现 2.4.1 函数的使用 2.…...

naive UI 的upload组件自定义手动上传图片的base64位

<template><n-upload ref"uploadRef" action"#" :default-upload"false" :custom-request"myUpload"><n-button>点击选择文件</n-button></n-upload><n-button click"submitUpload"> 上…...

信创办公–基于WPS的PPT最佳实践系列(表格和图标常用动画)

信创办公–基于WPS的PPT最佳实践系列&#xff08;表格和图标常用动画&#xff09; 目录应用背景操作步骤图表常用动画效果&#xff1a;擦除效果表格常用动画效果&#xff1a;轮子效果应用背景 文不如表&#xff0c;表不如图。在平时用ppt做总结时&#xff0c;我们会经常用到图…...

Spring Bean实例化和初始化的过程

承接上文Spring Bean生命周期应用程序在运行过程中能否去读取当前系统的环境变量或系统属性?这里涉及到一个非常重要的接口Environment&#xff0c;System.getenv&#xff0c;System.getProperties都是获取当前系统环境变量&#xff0c;Environment接口的实现类AbstractEnviro…...

WorkTool企微机器人接入智能问答

一、前言 最新版的企微机器人已经集成 Chat &#xff0c;无需开发可快速搭建智能对话机器人。 从官方介绍看目前集成版本使用模型为 3.5-turbo。 二、入门 创建 WorkTool 机器人 你可以通过这篇快速入门教程&#xff0c;来快速配置一个自己的企微机器人。 实现的流程如图&…...

C导入正则库问题

环境 操作系统:win11 专业版 gcc: gcc (x86_64-posix-seh-rev0, Built by MinGW-W64 project) 8.1.0 编辑器&#xff1a;vscode 要求 在c中使用正则表达式 遇到的问题以及解决思路 C标准中并没有正则表达式库 从其他地方下载正则表达式库即可。 http://gnuwin32.sourcefo…...

尚融宝05-Node.js入门

目录 一、Node.js的概念 1、JavaScript引擎 2、什么是Node.js 二、下载和安装 1、下载和安装 2、查看安装是否成功 三、初始Node.js程序 1、运行一个程序 常见问题 2、文件的读取 3、服务器端程序 三、Node.js的作用 1、Node.js的应用场景 2、BFF 解决什么问题 …...

「SAP ABAP」OPEN SQL(八)【WHERE语句大全】

&#x1f482;作者简介&#xff1a; THUNDER王&#xff0c;一名热爱财税和SAP ABAP编程以及热爱分享的博主。目前于江西师范大学本科在读&#xff0c;同时任汉硕云&#xff08;广东&#xff09;科技有限公司ABAP开发顾问。在学习工作中&#xff0c;我通常使用偏后端的开发语言A…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

ios苹果系统,js 滑动屏幕、锚定无效

现象&#xff1a;window.addEventListener监听touch无效&#xff0c;划不动屏幕&#xff0c;但是代码逻辑都有执行到。 scrollIntoView也无效。 原因&#xff1a;这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作&#xff0c;从而会影响…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中&#xff0c;我们渴望一个能激发创想、愉悦感官的工作与生活伙伴&#xff0c;它不仅是冰冷的科技工具&#xff0c;更能触动我们内心深处的细腻情感。正是在这样的期许下&#xff0c;华硕a豆14 Air香氛版翩然而至&#xff0c;它以一种前所未有的方式&#x…...

Java编程之桥接模式

定义 桥接模式&#xff08;Bridge Pattern&#xff09;属于结构型设计模式&#xff0c;它的核心意图是将抽象部分与实现部分分离&#xff0c;使它们可以独立地变化。这种模式通过组合关系来替代继承关系&#xff0c;从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...