当前位置: 首页 > news >正文

Redis-缓存

什么是缓存?

缓存就像自行车和越野车的避震器,降低硬着陆造成的损害

缓存就是系统的避震器,,防止过高的数据访问猛冲系统,导致其操作线程无法及时处理信息而瘫痪

缓存(Cache),就是数据交换的缓冲区,俗称的缓存就是缓冲区内的数据,一般从数据库中获取

为什么要使用缓存?

速度快,好用

缓存数据存储于代码中,而代码运行在内存中,内存的读写性能远高于磁盘,缓存可以大大降低用户访问并发量带来的服务器读写压力

那么,代价就是增加代码复杂度和运营的成本

如何使用缓存?

实际开发中,会构筑多级缓存来使系统运行速度进一步提升,例如:本地缓存与redis中的缓存并发使用

浏览器缓存:主要是存在于浏览器端的缓存

应用层缓存:可以分为tomcat本地缓存,或者是使用redis作为缓存

数据库缓存:在数据库中有一片空间是 buffer pool,增改查数据都会先加载到mysql的缓存中

CPU缓存:当代计算机最大的问题是 cpu性能提升了,但内存读写速度没有跟上,所以为了适应当下的情况,增加了cpu的L1,L2,L3级的缓存

缓存模型和思路

标准的操作方式就是查询数据库之前先查询缓存,如果缓存数据存在,则直接从缓存中返回,如果缓存数据不存在,再查询数据库,然后将数据存入redis。

Redis缓存模型:

缓存更新策略

缓存更新是为了节约内存而设计的一种策略,为避免redis堆积太多数据而对部分缓存数据进行更新、淘汰,主要可分为以下三种:

内存淘汰:redis自动进行,当redis内存达到咱们设定的max-memery的时候,会自动触发淘汰机制,淘汰掉一些不重要的数据(可以自己设置策略方式)

超时剔除:当我们给redis设置了过期时间ttl之后,redis会将超时的数据进行删除,方便咱们继续使用缓存

主动更新:我们可以手动调用方法把缓存删掉,通常用于解决缓存和数据库不一致问题

内存淘汰超时剔除主动更新
一致性一般
维护成本

业务场景选择:

  • 低一致性需求时:使用内存淘汰机制
  • 高一致性需求时:主动更新,并以超时剔除为兜底方案 

缓存穿透问题

缓存穿透 :缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库,如果大量这样的缓存打到数据库,那么将会对服务器造成非常大的压力

常见的解决方案有两种:

缓存空对象布隆过滤
优点实现简单,维护方便内存占用较少,没有多余key
缺点额外的内存消耗
可能造成短期的不一致
实现复杂
存在误判可能

缓存空对象思路分析:当我们客户端访问不存在的数据时,先请求redis,但是此时redis中没有数据,此时会访问到数据库,但是数据库中也没有数据,这个数据穿透了缓存,直击数据库,我们都知道数据库能够承载的并发不如redis这么高,如果大量的请求同时过来访问这种不存在的数据,这些请求就都会访问到数据库,简单的解决方案就是哪怕这个数据在数据库中也不存在,我们也把这个数据存入到redis中去(内容为空),这样,下次用户过来访问这个不存在的数据,那么在redis中也能找到这个数据就不会进入到数据库了,直接给他返回一个空值就行了

布隆过滤:布隆过滤器(Bloom Filter)是一种空间效率很高的数据结构,它用于快速判断一个元素是否在一个集合中。它的特点是能够迅速地判断出“一个元素绝对不在集合中”或者“一个元素可能在集合中”

工作原理:

  1. 初始化: 布隆过滤器在开始时是一个包含m位的数组,所有位都设置为0

  2. 哈希函数: 它使用k个哈希函数,每个函数可以把集合中的一个元素映射到m位数组中的一个位置上。

  3. 添加元素: 当添加一个元素到布隆过滤器时,它会用这k个哈希函数分别计算该元素的哈希值,并将对应的m位数组中的k位置设为1

  4. 元素查询: 当查询一个元素时,同样使用这k个哈希函数计算位置,然后检查这k个位置是否都是1。如果都是1,则认为元素“可能在集合中”;如果任何一个位置不是1,那么元素“绝对不在集合中”。

当然,因为哈希冲突的存在,布隆算法也存在假阳性:意味着即使一个元素不在集合中,布隆过滤器也可能错误地认为它在集合中。即当你添加一个元素时,通过多个哈希函数计算出多个位置,并将这些位置的位设置为1。如果另一个元素通过这些哈希函数计算出的哈希值恰好也是这些位置,那么布隆过滤器会认为这个元素也在集合中,即使实际上它可能不在。

小总结:

缓存穿透产生的原因是什么?

  • 用户请求的数据在缓存中和数据库中都不存在,不断发起这样的请求,给数据库带来巨大压力

缓存穿透的解决方案有哪些?

  • 缓存null值

  • 布隆过滤

  • 增强id的复杂度,避免被猜测id规律

  • 做好数据的基础格式校验

  • 加强用户权限校验

  • 做好热点参数的限流

缓存击穿问题

缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。

常见的解决方案有两种:

  • 互斥锁

  • 逻辑过期

分析:假设线程1在查询缓存之后,发现热点key挂了,本来应该去查询数据库,然后把这个数据重新加载到缓存的,此时只要线程1走完这个逻辑,其他线程就都能从缓存中加载这些数据了,但是假设在线程1没有走完的时候,后续的线程2,线程3,线程4同时过来访问当前这个方法, 那么这些线程都不能从缓存中查询到数据,那么他们就会同一时刻来访问查询缓存,都没查到,接着同一时间去访问数据库,同时的去执行数据库代码,对数据库访问压力过大

解决方法一:互斥锁

面对这种并发问题,第一个想到的解决方法肯定就是锁了,我们可以利用redis的setnx来实现一个互斥锁的效果。

假设线程过来,只能一个人一个人的来访问数据库,避免对数据库访问压力过大,但这也会影响查询的性能,因为此时会让查询的性能从并行变成了串行,我们可以采用tryLock方法 + double check来解决这样的问题。

假设现在线程1过来访问,他查询缓存没有命中,但是此时他获得到了锁的资源,那么线程1就会一个人去执行逻辑,假设现在线程2过来,线程2在执行过程中,并没有获得到锁,那么线程2就可以进行到休眠,直到线程1把锁释放后,线程2获得到锁,然后再来执行逻辑,此时就能够从缓存中拿到数据了。

解决方案二、逻辑过期方案

方案分析:我们之所以会出现这个缓存击穿问题,主要原因是在于我们对key设置了过期时间,假设我们不设置过期时间,其实就不会有缓存击穿的问题,但是不设置过期时间,这样数据不就一直占用我们内存了吗,我们可以采用逻辑过期方案。

我们把过期时间设置在 redis的value中,注意:这个过期时间并不会直接作用于redis,而是我们后续通过逻辑去处理。假设线程1去查询缓存,然后从value中判断出来当前的数据已经过期了,此时线程1去获得互斥锁,那么其他线程会进行阻塞,获得了锁的线程他会开启一个 线程去进行 以前的重构数据的逻辑,直到新开的线程完成这个逻辑后,才释放锁, 而线程1直接进行返回,假设现在线程3过来访问,由于线程线程2持有着锁,所以线程3无法获得锁,线程3也直接返回数据,只有等到新开的线程2把重建数据构建完后,其他线程才能走返回正确的数据。 

这种方案巧妙在于,异步的构建缓存,缺点在于在构建完缓存之前,返回的都是脏数据。

对比:

互斥锁方案:由于保证了互斥性,所以数据一致,且实现简单,因为仅仅只需要加一把锁而已,也没其他的事情需要操心,所以没有额外的内存消耗,缺点在于有锁就有死锁问题的发生,且只能串行执行性能肯定受到影响

逻辑过期方案: 线程读取过程中不需要等待,性能好,有一个额外的线程持有锁去进行重构数据,但是在重构数据完成前,其他的线程只能返回之前的数据,且实现起来麻烦

相关文章:

Redis-缓存

什么是缓存? 缓存就像自行车和越野车的避震器,降低硬着陆造成的损害 缓存就是系统的避震器,,防止过高的数据访问猛冲系统,导致其操作线程无法及时处理信息而瘫痪 缓存(Cache),就是数据交换的缓冲区,俗称的缓存就是缓冲区内的数据,一般从数…...

MySQL练习05

题目 步骤 触发器 use mydb16_trigger; #使用数据库create table goods( gid char(8) primary key, name varchar(10), price decimal(8,2), num int);create table orders( oid int primary key auto_increment, gid char(10) not null, name varchar(10), price decima…...

[C++][STL源码剖析] 详解AVL树的实现

目录 1.概念 2.实现 2.1 初始化 2.2 插入 2.2.1 旋转(重点) 左单旋 右单旋 双旋 2.❗ 双旋后,对平衡因子的处理 2.3 判断测试 完整代码: 拓展:删除 1.概念 二叉搜索树虽可以缩短查找的效率,但…...

Kubernetes存储 - Node本地存储卷

官方文档 Kubernetes管理的Node本地存储目前有三种,分别是EmptyDir,HostPath,Local,EmptyDir是一种与Pod同生命周期的Node临时存储;HostPath是Node的目录;Local是基于持久卷(PV)管理的Node目录。接下来详细说明这几种类型如何以存…...

Cocos Creator2D游戏开发-(2)Cocos 常见名词

场景(Scene): 它一个容器,容纳游戏中的各个元素,如精灵,标签,节点对象。它负责着游戏的运行逻辑,以帧为单位渲染这些内容。就是你理解到的那个场景; 个人理解就是一个画面, 一个游戏不同的关卡,会有不同的…...

【不同设备间的数据库连接】被连接设备如何开权限给申请连接的设备

为了方便叙述,简称申请连接数据库的设备为a,被连接的为b 1.确保在同一局域网下,检查a的ip 如果你设置的动态ip,那么每重启一次这个ip都会变。两种选择,每次都给b同步一下你的最新ip,或者a设置成静态ip。具…...

Whisper离线部署问题处理

Whisper是OpenAI开发一款开源语音识别模型,可以帮我们低成本的拥有语音识别的能力。具体的安装部署方法,我在这里就不详细说了,网上有很多相关文章: 使用OpenAI的Whisper 模型进行语音识别 (baidu.com) 我这里主要想说的是&…...

【Hive SQL】数据探查-数据抽样

文章目录 数据随机抽样1、随机数排序抽样(rand())2、数据块抽样(tablesample())3、分桶抽样 数据随机抽样 在大规模数据量的数据分析及建模任务中,往往针对全量数据进行挖掘分析时会十分耗时和占用集群资源&#xff0c…...

微信答题小程序产品研发-需求分析与原型设计

欲知应候何时节,六月初迎大暑风。 我前面说过,我决意仿一款答题小程序,所以我做了大量的调研。 题库软件产品开发不仅仅是写代码这一环,它包含从需求调研、分析与构思、设计到开发、测试再到部署上线一系列复杂过程。 需求分析…...

基础模板Mybatis-plus+Springboot+Mysql开发配置文件

1.pom.xml <dependencies><dependency><groupId>org.mybatis.spring.boot</groupId><artifactId>mybatis-spring-boot-starter</artifactId><version>2.2.2</version></dependency>// mybatisplus功能<dependency&g…...

java-poi实现excel自定义注解生成数据并导出

因为项目很多地方需要使用导出数据excel的功能&#xff0c;所以开发了一个简易的统一生成导出方法。 依赖 <dependency> <groupId>org.apache.poi</groupId> <artifactId>poi-ooxml</artifactId> <version>4.0.1</version…...

LeetCode707 设计链表

前言 题目&#xff1a; 707. 设计链表 文档&#xff1a; 代码随想录——设计链表 编程语言&#xff1a; C 解题状态&#xff1a; 代码功底不够&#xff0c;只能写个大概 思路 主要考察对链表结构的熟悉程度&#xff0c;对链表的增删改查&#xff0c;比较考验代码功底以及对链表…...

[Mysql-DDL数据操作语句]

目录 DDL语句操作数据库 库&#xff1a; 查看&#xff1a;show 创建&#xff1a;creat 删除&#xff1a;drop 使用(切换)&#xff1a;use 表&#xff1a; 查看&#xff1a;desc show 创建&#xff1a;create 表结构修改 rename as add drop modify change rename as …...

google 浏览器插件开发简单学习案例:TodoList;打包成crx离线包

参考&#xff1a; google插件支持&#xff1a; https://blog.csdn.net/weixin_42357472/article/details/140412993 这里是把前面做的TodoList做成google插件&#xff0c;具体网页可以参考下面链接 TodoList网页&#xff1a; https://blog.csdn.net/weixin_42357472/article/de…...

如何学习Doris:糙快猛的大数据之路(从入门到专家)

引言:大数据世界的新玩家 还记得我第一次听说"Doris"这个名字时的情景吗?那是在一个炎热的夏日午后,我正在办公室里为接下来的大数据项目发愁。作为一个刚刚跨行到大数据领域的新手,我感觉自己就像是被丢进了深海的小鱼—周围全是陌生的概念和技术。 就在这时,我的…...

梯度下降算法,gradient descent algorithm

定义&#xff1a;是一个优化算法&#xff0c;也成最速下降算法&#xff0c;主要的部的士通过迭代找到目标函数的最小值&#xff0c;或者收敛到最小值。 说人话就是求一个函数的极值点&#xff0c;极大值或者极小值 算法过程中有几个超参数&#xff1a; 学习率n&#xff0c;又称…...

Spring boot 2.0 升级到 3.3.1 的相关问题 (六)

文章目录 Spring boot 2.0 升级到 3.3.1 的相关问题 &#xff08;六&#xff09;spring-data-redis 和 Spring AOP 警告的问题问题描述问题调研结论解决方案方案1-将冲突的Bean 提升为InfrastructureBean方案2 其他相关资料 Spring boot 2.0 升级到 3.3.1 的相关问题 &#xff…...

C++模版基础知识与STL基本介绍

目录 一. 泛型编程 二. 函数模板 1. 概念 2. 函数模版格式 3. 函数模版的原理 4. 模版函数的实例化 (1). 隐式实例化 (2.) 显式实例化 5. 模版参数的匹配原则 三. 类模板 1. 类模板的定义格式 2. 类模板的实例化 四. STL的介绍 1. 什么是STL&#xff1f; 2. STL的版…...

Android 防止重复点击

1.第一种方式&#xff1a; // 两次点击按钮之间的点击间隔不能少于1000毫秒 private static final int MIN_CLICK_DELAY_TIME 700; private static long lastClickTime; /** * 是否是快速点击 * return */ public static boolean isFastClick() { …...

使用阿里云云主机通过nginx搭建文件服务器

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、准备基础环境二、安装配置nginx三、阿里云安全组配置安全组配置 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/4ee96f38312e4771938e40f463987…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

Ubuntu系统复制(U盘-电脑硬盘)

所需环境 电脑自带硬盘&#xff1a;1块 (1T) U盘1&#xff1a;Ubuntu系统引导盘&#xff08;用于“U盘2”复制到“电脑自带硬盘”&#xff09; U盘2&#xff1a;Ubuntu系统盘&#xff08;1T&#xff0c;用于被复制&#xff09; &#xff01;&#xff01;&#xff01;建议“电脑…...

FFmpeg avformat_open_input函数分析

函数内部的总体流程如下&#xff1a; avformat_open_input 精简后的代码如下&#xff1a; int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...