当前位置: 首页 > news >正文

C++使用opencv处理图像阴影部分

1. 直方图均衡化

直方图均衡化是一种增强图像对比度的方法,可以通过均衡化图像的灰度级分布来改善图像中阴影部分的亮度。

#include <opencv2/opencv.hpp>using namespace cv;int main() {// 读取图像Mat image = imread("input_image.jpg", IMREAD_COLOR);if (image.empty()) {std::cerr << "Error loading image!" << std::endl;return -1;}// 将图像转换为灰度图Mat gray;cvtColor(image, gray, COLOR_BGR2GRAY);// 应用直方图均衡化Mat equalized;equalizeHist(gray, equalized);// 显示原始图像和均衡化后的图像imshow("Original Image", gray);imshow("Equalized Image", equalized);waitKey(0);return 0;
}

2. 自适应直方图均衡化

自适应直方图均衡化可以更好地处理局部区域的对比度问题,因此特别适合处理阴影部分。

#include <opencv2/opencv.hpp>using namespace cv;int main() {// 读取图像Mat image = imread("input_image.jpg", IMREAD_COLOR);if (image.empty()) {std::cerr << "Error loading image!" << std::endl;return -1;}// 将图像转换为灰度图Mat gray;cvtColor(image, gray, COLOR_BGR2GRAY);// 应用自适应直方图均衡化Mat equalized;Ptr<CLAHE> clahe = createCLAHE();clahe->setClipLimit(4);  // 设置限制参数clahe->apply(gray, equalized);// 显示原始图像和均衡化后的图像imshow("Original Image", gray);imshow("CLAHE Image", equalized);waitKey(0);return 0;
}

3. 使用滤波器

有时可以通过使用滤波器来减少阴影的影响,例如使用高斯滤波器平滑图像,或者使用形态学操作来改善图像的局部对比度。

#include <opencv2/opencv.hpp>using namespace cv;int main() {// 读取图像Mat image = imread("input_image.jpg", IMREAD_COLOR);if (image.empty()) {std::cerr << "Error loading image!" << std::endl;return -1;}// 将图像转换为灰度图Mat gray;cvtColor(image, gray, COLOR_BGR2GRAY);// 使用高斯滤波器平滑图像Mat blurred;GaussianBlur(gray, blurred, Size(5, 5), 0);// 显示原始图像和平滑后的图像imshow("Original Image", gray);imshow("Blurred Image", blurred);waitKey(0);return 0;
}

相关文章:

C++使用opencv处理图像阴影部分

1. 直方图均衡化 直方图均衡化是一种增强图像对比度的方法&#xff0c;可以通过均衡化图像的灰度级分布来改善图像中阴影部分的亮度。 #include <opencv2/opencv.hpp>using namespace cv;int main() {// 读取图像Mat image imread("input_image.jpg", IMREA…...

4.Java Web开发模式(javaBean+servlet+MVC)

Java Web开发模式 一、Java Web开发模式 1.javaBean简介 JavaBeans是Java中一种特殊的类&#xff0c;可以将多个对象封装到一个对象&#xff08;bean&#xff09;中。特点是可序列化&#xff0c;提供无参构造器&#xff0c;提供getter方法和setter方法访问对象的属性。名称中…...

centos7 mysql 基本测试(6)主从简单测试

centos7 xtrabackup mysql 基本测试&#xff08;6&#xff09;主从简单测试 mysql -u etc -p 1234aA~1 参考&#xff1a; centos7 时区设置 时间同步 https://blog.csdn.net/wowocpp/article/details/135931129 Mysql数据库&#xff1a;主从复制与读写分离 https://blog.csd…...

信息安全工程师题

防火墙安全策略有两种类型&#xff1a;白名单策略、黑名单策略白名单策略&#xff1a;只允许符合安全规则的包通过防火墙&#xff0c;其他通信包禁止黑名单策略&#xff1a;禁止与安全规则相冲突的包通过防火墙&#xff0c;其他通信包允许实现网络地址转换的方式主要有静态NAT、…...

springcloud rocketmq 新增的消费者组从哪里开始消费

如果新建一个新的消费者组&#xff0c;是否会消费历史消息&#xff0c;导致重复消费&#xff1f; 直接在 console 界面新增消费者组&#xff0c;但是没有办法绑定订阅关系&#xff0c;没有找到入口&#xff0c;在 控制台项目源码 rocketmq-externals 也没有找到可以确定订阅关系…...

Redis-缓存

什么是缓存&#xff1f; 缓存就像自行车和越野车的避震器&#xff0c;降低硬着陆造成的损害 缓存就是系统的避震器&#xff0c;,防止过高的数据访问猛冲系统,导致其操作线程无法及时处理信息而瘫痪 缓存(Cache),就是数据交换的缓冲区,俗称的缓存就是缓冲区内的数据,一般从数…...

MySQL练习05

题目 步骤 触发器 use mydb16_trigger; #使用数据库create table goods( gid char(8) primary key, name varchar(10), price decimal(8,2), num int);create table orders( oid int primary key auto_increment, gid char(10) not null, name varchar(10), price decima…...

[C++][STL源码剖析] 详解AVL树的实现

目录 1.概念 2.实现 2.1 初始化 2.2 插入 2.2.1 旋转&#xff08;重点&#xff09; 左单旋 右单旋 双旋 2.❗ 双旋后&#xff0c;对平衡因子的处理 2.3 判断测试 完整代码&#xff1a; 拓展&#xff1a;删除 1.概念 二叉搜索树虽可以缩短查找的效率&#xff0c;但…...

Kubernetes存储 - Node本地存储卷

官方文档 Kubernetes管理的Node本地存储目前有三种&#xff0c;分别是EmptyDir,HostPath,Local&#xff0c;EmptyDir是一种与Pod同生命周期的Node临时存储&#xff1b;HostPath是Node的目录&#xff1b;Local是基于持久卷(PV)管理的Node目录。接下来详细说明这几种类型如何以存…...

Cocos Creator2D游戏开发-(2)Cocos 常见名词

场景&#xff08;Scene): 它一个容器&#xff0c;容纳游戏中的各个元素&#xff0c;如精灵&#xff0c;标签&#xff0c;节点对象。它负责着游戏的运行逻辑&#xff0c;以帧为单位渲染这些内容。就是你理解到的那个场景; 个人理解就是一个画面, 一个游戏不同的关卡,会有不同的…...

【不同设备间的数据库连接】被连接设备如何开权限给申请连接的设备

为了方便叙述&#xff0c;简称申请连接数据库的设备为a&#xff0c;被连接的为b 1.确保在同一局域网下&#xff0c;检查a的ip 如果你设置的动态ip&#xff0c;那么每重启一次这个ip都会变。两种选择&#xff0c;每次都给b同步一下你的最新ip&#xff0c;或者a设置成静态ip。具…...

Whisper离线部署问题处理

Whisper是OpenAI开发一款开源语音识别模型&#xff0c;可以帮我们低成本的拥有语音识别的能力。具体的安装部署方法&#xff0c;我在这里就不详细说了&#xff0c;网上有很多相关文章&#xff1a; 使用OpenAI的Whisper 模型进行语音识别 (baidu.com) 我这里主要想说的是&…...

【Hive SQL】数据探查-数据抽样

文章目录 数据随机抽样1、随机数排序抽样&#xff08;rand()&#xff09;2、数据块抽样&#xff08;tablesample()&#xff09;3、分桶抽样 数据随机抽样 在大规模数据量的数据分析及建模任务中&#xff0c;往往针对全量数据进行挖掘分析时会十分耗时和占用集群资源&#xff0c…...

微信答题小程序产品研发-需求分析与原型设计

欲知应候何时节&#xff0c;六月初迎大暑风。 我前面说过&#xff0c;我决意仿一款答题小程序&#xff0c;所以我做了大量的调研。 题库软件产品开发不仅仅是写代码这一环&#xff0c;它包含从需求调研、分析与构思、设计到开发、测试再到部署上线一系列复杂过程。 需求分析…...

基础模板Mybatis-plus+Springboot+Mysql开发配置文件

1.pom.xml <dependencies><dependency><groupId>org.mybatis.spring.boot</groupId><artifactId>mybatis-spring-boot-starter</artifactId><version>2.2.2</version></dependency>// mybatisplus功能<dependency&g…...

java-poi实现excel自定义注解生成数据并导出

因为项目很多地方需要使用导出数据excel的功能&#xff0c;所以开发了一个简易的统一生成导出方法。 依赖 <dependency> <groupId>org.apache.poi</groupId> <artifactId>poi-ooxml</artifactId> <version>4.0.1</version…...

LeetCode707 设计链表

前言 题目&#xff1a; 707. 设计链表 文档&#xff1a; 代码随想录——设计链表 编程语言&#xff1a; C 解题状态&#xff1a; 代码功底不够&#xff0c;只能写个大概 思路 主要考察对链表结构的熟悉程度&#xff0c;对链表的增删改查&#xff0c;比较考验代码功底以及对链表…...

[Mysql-DDL数据操作语句]

目录 DDL语句操作数据库 库&#xff1a; 查看&#xff1a;show 创建&#xff1a;creat 删除&#xff1a;drop 使用(切换)&#xff1a;use 表&#xff1a; 查看&#xff1a;desc show 创建&#xff1a;create 表结构修改 rename as add drop modify change rename as …...

google 浏览器插件开发简单学习案例:TodoList;打包成crx离线包

参考&#xff1a; google插件支持&#xff1a; https://blog.csdn.net/weixin_42357472/article/details/140412993 这里是把前面做的TodoList做成google插件&#xff0c;具体网页可以参考下面链接 TodoList网页&#xff1a; https://blog.csdn.net/weixin_42357472/article/de…...

如何学习Doris:糙快猛的大数据之路(从入门到专家)

引言:大数据世界的新玩家 还记得我第一次听说"Doris"这个名字时的情景吗?那是在一个炎热的夏日午后,我正在办公室里为接下来的大数据项目发愁。作为一个刚刚跨行到大数据领域的新手,我感觉自己就像是被丢进了深海的小鱼—周围全是陌生的概念和技术。 就在这时,我的…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...