当前位置: 首页 > news >正文

1.c#(winform)编程环境安装

目录

  • 安装vs
  • 创建应用
  • 帮助查看器安装与使用( msdn)

安装vs

安装什么版本看个人心情,或者公司开发需求需要
而本栏全程使用vs2022进行开发c#,着重讲解winform桌面应用开发
使用***.net framework***开发

那先去官网安装企业版的vs2022吧,快速跳转官网, 选择安装vs2022 enterprise 版本
参考这个 安装教程也够用了
重点说一下就是安装的时候在
单个组件里面加入+ help viewer (帮助文档工具msdn)

创建应用

点击新建项目,下一步,确认就可以了
在这里插入图片描述
在这里插入图片描述

帮助查看器安装与使用( msdn)

在这里插入图片描述
帮助-》设置帮助首选项-》在帮助查看器中启动
一般需要安装,安装一下就好了
然后点击帮助-》查看帮助----就会自动打开帮助查看器了
在联网状态下我们可以下载自己需要的文档下来就行了
一般默认挂起项已经够用了,如果还有其他需求以后在添加也可以
点击更新就好了-----他就会帮我们下载到本地

当然也支持在线文档,如果没安装帮助查看器就默认会跳转到官方网站文档里面
在这里插入图片描述

使用的话,点击选择程序中的代码点击f1可以自动启动查看
我一般喜欢使用索引的方式查看,根据个人习惯吧。你们自己决定
在这里插入图片描述
加粗样式

相关文章:

1.c#(winform)编程环境安装

目录 安装vs创建应用帮助查看器安装与使用( msdn) 安装vs 安装什么版本看个人心情,或者公司开发需求需要 而本栏全程使用vs2022进行开发c#,着重讲解winform桌面应用开发 使用***.net framework***开发 那先去官网安装企业版的vs…...

图中的最短环

2608. 图中的最短环 现有一个含 n 个顶点的 双向 图,每个顶点按从 0 到 n - 1 标记。图中的边由二维整数数组 edges 表示,其中 edges[i] [ui, vi] 表示顶点 ui 和 vi 之间存在一条边。每对顶点最多通过一条边连接,并且不存在与自身相连的顶…...

安装依赖 npm install idealTree:lib: sill idealTree buildDeps 卡着不动

我一直怀疑是网络问题,因为等了很久也能安装成功,就是时间比较长,直到现在完全受不了了,决定好好整治下这个问题! 1、执行命令 npm config get userconfig 查看配置文件所在位置,将其删除。 2、执行 n…...

LLMs之Llama 3.1:Llama 3.1的简介、安装和使用方法、案例应用之详细攻略

LLMs之Llama 3.1:Llama 3.1的简介、安装和使用方法、案例应用之详细攻略 导读:2024年7月23日,Meta重磅推出Llama 3.1。本篇文章主要提到了Meta推出的Llama 3.1自然语言生成模型。 背景和痛点 >> 过去开源的大型语言模型在能力和性能上一…...

如何实现一个大模型在回答问题时同时提供相关内容链接

通义生成 为了让大模型在回答问题时能够提供相关内容链接,通常采用的方法是结合检索增强生成(Retrieval-Augmented Generation, RAG)的技术。这种方法可以让大模型在生成答案的同时,从外部知识源中检索相关信息,并将这…...

<数据集>玉米地杂草识别数据集<目标检测>

数据集格式:VOCYOLO格式 图片数量:9900张 标注数量(xml文件个数):9900 标注数量(txt文件个数):9900 标注类别数:2 标注类别名称:[Maize, Weed] 序号类别名称图片数框数1Maize8439125142Weed959231048…...

vue3中动态添加form表单校验

<template><div><div v-for"(formData, index) in forms" :key"index"><u-form :model"formData" :rules"rules" ref"formRefs"><u-form-item label"用户名" prop"username"…...

Java面试八股之什么是声明式事务管理,spring怎么实现声明式事务管理?

什么是声明式事务管理&#xff0c;spring怎么实现声明式事务管理&#xff1f; 声明式事务管理是一种编程范式&#xff0c;它允许开发人员通过声明性的配置或注解&#xff0c;而不是硬编码事务处理逻辑&#xff0c;来指定哪些方法或类应该在其上下文中执行事务。这种方法将事务…...

springboot 缓存预热的几种方案

缓存预热是指在 Spring Boot 项目启动时&#xff0c;预先将数据加载到缓存系统&#xff08;如 Redis&#xff09;中的一种机制。 这里我给大家总结几个缓存预热的方案。 方案1&#xff1a;使用启动监听事件实现缓存预热 可以使用 ApplicationListener 监听 ContextRefreshed…...

谷粒商城实战笔记-62-商品服务-API-品牌管理-OSS整合测试

文章目录 一&#xff0c;Java中上传文件到阿里云OSS1&#xff0c;整合阿里云OSS2&#xff0c;测试上传文件 二&#xff0c;Java中整合阿里云OSS服务指南引言准备工作1. 注册阿里云账号2. 获取Access Key3. 添加依赖 实现OSS客户端1. 初始化OSSClient2. 创建Bucket3. 上传文件4.…...

linux c 递归锁的介绍

递归锁的递归特性确实只是对于持有锁的线程。当一个线程获取了递归锁后&#xff0c;它可以多次重复获取该锁&#xff0c;而不会导致自身阻塞或死锁。这是递归锁的重要特点&#xff0c;它允许同一个线程在已经持有锁的情况下&#xff0c;再次获取相同的锁。 然而&#xff0c;对…...

React好用的组件库有哪些

React好用的组件库有很多&#xff0c;它们各自具有不同的特点和优势&#xff0c;适用于不同的开发场景和需求。以下是一些受欢迎的React组件库及其特点&#xff1a; Material-UI&#xff08;现更名为MUI&#xff09; 特点&#xff1a;这是一个开源的React组件库&#xff0c;实…...

简单快捷!Yarn的安装与使用指南

Yarn 是由 Facebook (现 Meta) 开发的包管理工具。 今天&#xff0c;我将介绍如何使用 Yarn。 目录 Yarn 的官方网站 关于安装 版本确认 开始一个新项目&#xff08;创建 package.json 文件&#xff09; 安装软件包 升级包 运行脚本 执行包的命令 卸载包 总结 Yarn 的…...

【Django】前端技术-网页样式表CSS

文章目录 一、申明规则CSS的导入方式行内样式内部样式外部样式 二、CSS的选择器1. 基本选择器标签选择器&#xff1a; 选择一类标签 标签{}类选择器 class&#xff1a; 选择所有class属性一致的表情&#xff0c;跨标签.类名{}ID选择器&#xff1a;全局唯一 #id名{} 2.层次选择器…...

openssl req 详解

一、openssl req 该命令用于创建和处理PKCS#10格式的证书请求&#xff08;certificate requests CSRs&#xff09;&#xff0c;也可以用来创建自签名证书&#xff08; self-signed certificates&#xff09;来当作根证书&#xff08;root CAs&#xff09;使用 -new 该选项用来…...

mysql各种锁总结

mysql全局锁 读锁&#xff08;共享锁&#xff09; 阻止其他用户更新&#xff0c;但允许他们读取数据。 写锁&#xff08;排他锁&#xff09; 阻止其他用户读取和更新数据。 全局锁场景&#xff1a;进行数据库备份 数据库备份 背景&#xff1a;备份数据肯定要保证数据一致…...

SpringSecurity--DelegatingFilterProxy工作流程

什么是 DelegatingFilterProxy&#xff1f; DelegatingFilterProxy 是 Spring 提供的一个特殊的过滤器&#xff0c;它起到了桥梁的作用&#xff0c;可以让你在 Spring 容器中管理 Servlet 容器中的过滤器。 为什么需要 DelegatingFilterProxy&#xff1f; 通常情况下&#x…...

GitHub每日最火火火项目(7.27)

1. 项目名称&#xff1a;meta - llama / llama3 项目介绍&#xff1a;这是 Meta Llama 3 的官方 GitHub 站点。目前尚不清楚该项目的具体功能和特点&#xff0c;但从名称推测&#xff0c;可能与 Llama 3 模型相关&#xff0c;或许涉及到模型的开发、训练或应用等方面。 项目地…...

git 学习总结

文章目录 一、 git 基础操作1、工作区2、暂存区3、本地仓库4、远程仓库 二、git 的本质三、分支git 命令总结 作者: baron 一、 git 基础操作 如图所示 git 总共有几个区域 工作区, 暂存区, 本地仓库, 远程仓库. 1、工作区 存放项目代码的地方&#xff0c;他有两种状态 Unm…...

《如何找到自己想做的事》

Arouse Enthusiasm, Give Scope to Skill, Explore The Essence *摘其两纸 我喜欢打篮球&#xff0c;并不是我真的喜欢这项运动&#xff0c;而是我喜欢团队竞技。我喜欢看书&#xff0c;并不是我真喜欢阅读&#xff0c;而是我想要了解世界运行逻辑。寻找热爱&#xff0c;探寻本…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...