【学习笔记】子集DP
背景
有一类问题和子集有关。
给你一个集合 S S S,令 T T T 为 S S S 的超集,也就是 S S S 所有子集的集合,求 T T T 中所有元素的和。
暴力1
先预处理子集的元素和 A i A_i Ai,再枚举子集。
for(int s=0; s<(1<<n); s++)for(int i=0; i<(1<<n); i++)if(s&i) f[s]+=A[i];
时间复杂度 O ( n 4 ) O(n^4) O(n4)
暴力2
其实枚举子集有个小 trick
for(int s=0; s<(1<<n); s++)for(int i=s; i>0; i=(i-1)&s)f[s]+=A[i];
由二项式定理,时间复杂度为 O ( 3 n ) O(3^n) O(3n)
子集DP
令 g s , i g_{s,i} gs,i 为状态为 s s s,只考虑后 i i i 位转移的答案。
那么转移就是
g s , i = { g s , i − 1 s & ( 1 < < i ) = 0 g s , i − 1 + g s ⨁ ( 1 < < i ) , i − 1 o t h e r w i s e g_{s,i} = \begin{cases} g_{s,i-1} & s\&(1<<i)=0 \\g_{s,i-1} +g_{s\bigoplus(1<<i),i-1}&otherwise\end{cases} gs,i={gs,i−1gs,i−1+gs⨁(1<<i),i−1s&(1<<i)=0otherwise
这样可以做到不重不漏的转移。
推荐一篇blog,非常形象:https://www.cnblogs.com/maple276/p/17975253
可以发现,这个转移只和上一层有关,所以第二维是可以省略的。
前缀和(子集向超集转移)
for(int i=0; i<n; i++)
{for(int s=0; s<(1<<n); s++){if(s&_2)(f[s]+=f[s^_2])%(mod-1);}_2<<=1;
}
后缀和(超集向子集转移)
for(int i=0; i<n; i++)
{for(int s=0; s<(1<<n); s++){if(!(s&_2))(f[s]+=f[s^_2])%(mod-1);}_2<<=1;
}
差分
//后缀差分
for(int i=0; i<20; i++)
{for(int s=0; s<S; s++){if(!(s&_2))(f[s]-=f[s^_2])%=mod;}_2<<=1;
}
例题
CF165E
定义 x x x 和 y y y 相容为 x & y = 0 x\&y=0 x&y=0,给你一个序列 A A A,对于每个元素,在 A A A 中找到和它相容的元素。 ∣ A ∣ ≤ 1 0 6 , A i ≤ 4 × 1 0 6 |A|\leq 10^6,A_i\leq 4\times 10^6 ∣A∣≤106,Ai≤4×106
思路
x & y = 0 x\&y=0 x&y=0 等价于 x ˜ & y = y \~x\&y=y x˜&y=y,那么只需要对 A A A做类似前缀和的操作,加法改成覆盖即可。
代码
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int S=1<<22;
void O_o()
{int n;cin>>n;vector<int> f(S,-1),a(n+1);for(int i=1; i<=n; i++){cin>>a[i];f[a[i]]=a[i];}int _2=1;for(int i=0; i<=21; i++){for(int s=0; s<S; s++){if(!(s&_2)) continue;if(f[s^_2]!=-1)f[s]=f[s^_2];}_2<<=1;}int t=S-1;for(int i=1; i<=n; i++){cout<<f[t^a[i]]<<" ";}cout<<"\n";
}
signed main()
{ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);cout<<fixed<<setprecision(2);int T=1;
// cin>>T;while(T--){O_o();}
}
相关文章:
【学习笔记】子集DP
背景 有一类问题和子集有关。 给你一个集合 S S S,令 T T T 为 S S S 的超集,也就是 S S S 所有子集的集合,求 T T T 中所有元素的和。 暴力1 先预处理子集的元素和 A i A_i Ai,再枚举子集。 for(int s0; s<(1<…...

苦学Opencv的第十四天:人脸检测和人脸识别
Python OpenCV入门到精通学习日记:人脸检测和人脸识别 前言 经过了十三天的不懈努力,我们终于也是来到了人脸检测和人脸识别啦!相信大家也很激动吧。接下来我们开始吧! 人脸识别是基于人的脸部特征信息进行身份识别的一种生物识…...

PyTorch学习(1)
PyTorch学习(1) CIFAR-10数据集-图像分类 数据集来源是官方提供的: torchvision.datasets.CIFAR10()共有十类物品,需要用CNN实现图像分类问题。 代码如下:(CIFAR_10_Classifier_Self_1.py) import torch import t…...
三思而后行:计算机行业的决策智慧
在计算机行业,"三思而后行"这一原则显得尤为重要。在这个快速发展、技术不断更新换代的领域,每一个决策都可能对项目的成功与否产生深远的影响。以下是一篇关于在计算机行业中三思重要性的文章。 三思而后行:计算机行业的决策智慧 …...

Linux--Socket编程UDP
前文:Socket套接字编程 UDP协议特点 无连接:UDP在发送数据之前不需要建立连接,减少了开销和发送数据之前的时延。尽最大努力交付:UDP不保证可靠交付,主机不需要维持复杂的连接状态表。面向报文:UDP对应用层…...

《javaEE篇》--单例模式详解
目录 单例模式 饿汉模式 懒汉模式 懒汉模式(优化) 指令重排序 总结 单例模式 单例模式属于一种设计模式,设计模式就好比是一种固定代码套路类似于棋谱,是由前人总结并且记录下来我们可以直接使用的代码设计思路。 单例模式就是,在有…...
Java核心 - Lambda表达式详解与应用示例
作者:逍遥Sean 简介:一个主修Java的Web网站\游戏服务器后端开发者 主页:https://blog.csdn.net/Ureliable 觉得博主文章不错的话,可以三连支持一下~ 如有疑问和建议,请私信或评论留言! 前言 Lambda表达式是…...

算法通关:006_1二分查找
二分查找 查找一个数组里面是否存在num主要代码运行结果 详细写法自动生成数组和num,利用对数器查看二分代码是否正确 查找一个数组里面是否存在num 主要代码 /*** Author: ggdpzhk* CreateTime: 2024-07-27*/ public class cg {//二分查找public static boolean …...

总结一些vue3小知识3
总结一些vue3小知识1:http://t.csdnimg.cn/C5vER 总结一些vue3小知识2:http://t.csdnimg.cn/sscid 1.限制时间选择器只能选择后面的日期 说明:disabled-date属性是一个用来判断该日期是否被禁用的函数,接受一个 Date 对象作为参…...

JAVAWeb实战(前端篇)
项目实战一 0.项目结构 1.创建vue3项目,并导入所需的依赖 npm install vue-router npm install axios npm install pinia npm install vue 2.定义路由,axios,pinia相关的对象 文件(.js) 2.1路由(.js) import {cre…...

axios请求大全
本文讲解axios封装方式以及针对各种后台接口的请求方式 axios的介绍和基础配置可以看这个文档: 起步 | Axios中文文档 | Axios中文网 axios的封装 axios封装的重点有三个,一是设置全局config,比如请求的基础路径,超时时间等,第二点是在每次…...

C# 简单的单元测试
文章目录 前言参考文档新建控制台项目新建测试项目添加引用添加测试方法测试结果(有错误)测试结果,通过正规的方法抛出异常 总结 前言 听说复杂的项目最好都要单元测试一下。我这里也试试单元测试这个功能。到时候调试起来也方便。 参考文档 C# 单元测试…...

Linux中Mysql5.7主从架构(一主多从)配置教程
🏡作者主页:点击! 🐧Linux基础知识(初学):点击! 🐧Linux高级管理防护和群集专栏:点击! 🔐Linux中firewalld防火墙:点击! ⏰️创作…...

BACnet物联网关BL103:Modbus协议转BACnet/MSTP
随着物联网技术在楼宇自动化与暖通控制系统中的迅猛发展,构建一种既经济高效又高度可靠的协议转换物联网关成为了不可或缺的核心硬件组件。在此背景下,我们钡铼特别推荐一款主流的BAS(楼宇自动化系统)与BACnet物联网关——BL103&a…...
Go 语言条件变量 Cond
1.Cond 的使用方法 Go 标准库提供 Cond 同步原语的目的是为等待/通知场景下的并发操作提供支持。Cond 通常用于等待某个条件的一组 goroutine,当条件变为 true 时,其中一个或者所有的 goroutine 会被唤醒执行。 Cond 与某个条件相关,这个条件需要一组 goroutine 协作达到。当这…...

PostgreSQL 中如何重置序列值:将自增 ID 设定为特定值开始
我是从excel中将数据导入,然后再通过sql插入数据,就报错。 需要设置自增ID开始值 1、确定序列名称: 首先,需要找到与的增字段相关的序列名称。假设表名是 my_table 和自增字段是 id,可以使用以下查询来获取序列名称…...

Unity 之 【Android Unity 共享纹理】之 Android 共享图片给 Unity 显示
Unity 之 【Android Unity 共享纹理】之 Android 共享图片给 Unity 显示 目录 Unity 之 【Android Unity 共享纹理】之 Android 共享图片给 Unity 显示 一、简单介绍 二、共享纹理 1、共享纹理的原理 2、共享纹理涉及到的关键知识点 3、什么可以实现共享 不能实现共享…...
Go语言的数据结构
数据结构 数组 支持多维数组,属于值类型,支持range遍历 例子:随机生成长度为10整数数组 package main import ("fmt""math/rand" ) // 赋值 随机获取100以内的整数 func RandomArrays() {var array [10]int //声明var…...
python_在sqlite中创建表并写入表头
python_在sqlite中创建表并写入表头 import sqlite3def write_title_to_sqlite(tableName,titleList,dataTypeGroupsList,database_path):conn sqlite3.connect(database_path)# 创建游标cursor conn.cursor()#MEMO 长文本#create_table_bodycreate_table_body "序号 …...

1.c#(winform)编程环境安装
目录 安装vs创建应用帮助查看器安装与使用( msdn) 安装vs 安装什么版本看个人心情,或者公司开发需求需要 而本栏全程使用vs2022进行开发c#,着重讲解winform桌面应用开发 使用***.net framework***开发 那先去官网安装企业版的vs…...
鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/
使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

【Linux】Linux 系统默认的目录及作用说明
博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...
CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝
目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为:一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...

STM32---外部32.768K晶振(LSE)无法起振问题
晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...
MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释
以Module Federation 插件详为例,Webpack.config.js它可能的配置和含义如下: 前言 Module Federation 的Webpack.config.js核心配置包括: name filename(定义应用标识) remotes(引用远程模块࿰…...

sshd代码修改banner
sshd服务连接之后会收到字符串: SSH-2.0-OpenSSH_9.5 容易被hacker识别此服务为sshd服务。 是否可以通过修改此banner达到让人无法识别此服务的目的呢? 不能。因为这是写的SSH的协议中的。 也就是协议规定了banner必须这么写。 SSH- 开头,…...
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...

门静脉高压——表现
一、门静脉高压表现 00:01 1. 门静脉构成 00:13 组成结构:由肠系膜上静脉和脾静脉汇合构成,是肝脏血液供应的主要来源。淤血后果:门静脉淤血会同时导致脾静脉和肠系膜上静脉淤血,引发后续系列症状。 2. 脾大和脾功能亢进 00:46 …...