三维影像系统PACS源码,图像存储与传输系统,应用于医院中管理医疗设备如CT,MR等产生的医学图像的信息系统
PACS,即图像存储与传输系统,是应用于医院中管理医疗设备如CT,MR等产生的医学图像的信息系统。目标是支持在医院内部所有关于图像的活动,集成了医疗设备,图像存储和分发,数字图像在重要诊断和会诊时的显示,图像归档,以及外部信息系统。
针对医院所有能产生图像的医学设备,通过本系统处理这些医学图像信息的采集、存储、报告、输出、查询、调阅、传输和管理。通过数字化,简化基于影像检查的流程,提高效率,缩短就诊时间,长期、安全的保存影像资料。
系统模块:
工作站:
分诊工作站、超声工作站、放射工作站、内镜工作站、病理工作站、临床工作站
基本信息维护:
输入模板、输入词汇、报告模板、医院信息、部门信息、人员信息、设备类型、设备明细、部位明细、检查明细
报表查询:
检查信息查询、工作量统计
系统维护:
首次启动程序、菜单维护、权限维护、角色维护
系统功能 :
1.分级存储,通过灵活机制,兼顾大数据存储和检索效率;
2.诊断报告可模板生成或自定义生成,支持主任医生审核,报告操作痕迹保留;
3.采集、接收影像设备的DICOM3.0和非DICOM3.0格式的影像数据,图像无损压缩;
4.图像采用专有的多进程同步并发传输模式;
5.支持基于DICOM3.0的远程医疗功能,可以促进医院之间的技术交流;
6.提供10多种的图像调节功能,包括拼接、清晰度增强、旋转、移动、滤波、边缘锐化、边缘平滑等;
7.支持JPG、BMP、TIFF等格式存储,以及转化成DICOM3.0格式功能;
8.医生可以获取同一患者在不同时期,不同设备的影像资料,同时显示、对比;
9.提供HIS、电子病历、体检系统接口;
10.提供多种不同的影像观察功能,如:影像放大,影像旋转,伪彩显示,图像拼接,影像对比,定位线重建,矢冠状位重建,三维鼠标,三维重建,虚拟内窥镜等。图像可边下载边查看。
系统特点:
1、最大限度地共享及应用现有的信息体系资源,构建在业务功能方面可进行互动的系统,针对医院的所有业务,构建先进的医疗信息系统。
2、功能和界面尽可能地符合医生操作习惯,流程在提高工作效率的前提下尽可能的向医院日常工作流程靠拢,一切从实用性出发。
3、全方位的支持医院内与医学影像相关的各类应用需求,包括日常阅片诊断、临床治疗、远程会诊、远程教学、科研等。
4、查询及调阅速度:系统响应速度要快,数据录入、查询时没有停顿感。
5、能随时快捷地调阅任何病人在任何时期任何类型的影像资料以及诊断报告。
6、PACS系统图像传输速度快,保证工作站从服务器上打开少于2000幅图像时,医生在5秒内即可以读片。
相关文章:

三维影像系统PACS源码,图像存储与传输系统,应用于医院中管理医疗设备如CT,MR等产生的医学图像的信息系统
PACS,即图像存储与传输系统,是应用于医院中管理医疗设备如CT,MR等产生的医学图像的信息系统。目标是支持在医院内部所有关于图像的活动,集成了医疗设备,图像存储和分发,数字图像在重要诊断和会诊时的显示&a…...

Golang | Leetcode Golang题解之第292题Nim游戏
题目: 题解: func canWinNim(n int) bool {return n%4 ! 0 }...
Redis在SpringBoot中配置
lettuce redis的使用方法有两种,jedis和lecttuce,jedis用的不是很多,下面讲解用lettuce的使用方法。 首先导包: <!--redis依赖--> <dependency><groupId>org.springframework.boot</groupId><artif…...

linux 网络子系统
__netif_receive_skb_core 是 Linux 内核网络子系统中一个非常重要的函数,它负责将网络设备驱动层接收到的数据包传递到上层协议栈进行处理。以下是对该函数的一些关键点的详细解析: 一、函数作用 __netif_receive_skb_core 函数是处理接收到的网络数据…...

JVM:垃圾回收器演进
文章目录 一、演进二、Shenandoah三、ZGC 一、演进 二、Shenandoah Shenandoah是由Red Hat开发的一款低延迟的垃圾收集器,Shenandoah并发执行大部分GC工作,包括并发的整理,堆大小对STW的时间基本没有影响。 三、ZGC ZGC是一种可扩展的低延…...

全新微软语音合成网页版源码,短视频影视解说配音网页版系统-仿真人语音
源码介绍 最新微软语音合成网页版源码,可以用来给影视解说和短视频配音。它是TTS文本转语言,API接口和PHP源码。 这个微软语音合成接口的源码,超级简单,就几个文件搞定。用的是官方的API,试过了,合成速度…...

大语言模型-对比学习-Contrastive Learning
一、对比学习概念 对比学习是一种特殊的无监督学习方法。 旨在通过拉近相关样本的距离并且推远不相关样本的距离,来学习数据表示。 通常使用一种高自由度、自定义的规则来生成正负样本。在模型预训练中有着广泛的应用。 二、对比学习小案例 对比学习主要分为三个…...
C++ 封装的用法
C(七)封装 封装,可以达到,对外提供接口,屏蔽数据,对内开放数据。 权限控制 struct 中所有行为和属性都是 public 的(默认),此举也是为了 C兼容 C 语言, 因为 C 语言中没有权限的概念。 C中的 class 可以…...

【C++11:异常】
目录 抛异常标准书写格式 抛异常如何执行? 指定抛出异常类型: noexcept 关键字:throw 抛异常标准书写格式 抛异常如何执行? 当212行的异常被抛出,程序会重新返回函数func中,在函数中去寻找catch 语句的…...

Dify中HTTP请求节点的常见操作
HTTP节点包括API请求类型(GET、POST、HEAD、PATCH、PUT、DELETE),鉴权类型(无、API-Key基础、API-Key Bearer、API-Key自定义),HEADERS键值设置,PARAMS键值设置,BODY(non…...

《大语言模型(赵鑫)》知识框图
...

【Android】性能实践—编码优化与布局优化学习笔记
编码优化 使用场景 如果需要拼接字符串,优先使用StringBuffer和StringBuilder进行凭借,他们的性能优于直接用加号进行拼接,因为使用加号连接符会创建多余的对象一般情况下使用基本数据类来代替封装数据类型(比如int优于Integer&…...

如何合规与安全地利用专业爬虫工具,构建企业数据竞争优势
摘要: 本文深入探讨了在当今大数据时代,企业如何通过合规且安全的方式运用专业爬虫工具,有效收集并分析海量信息,进而转化为企业独有的数据优势。我们不仅会介绍最佳实践,还会讨论关键技术和策略,帮助企业…...

自动驾驶三维车道线检测系列—OpenLane数据集介绍
文章目录 1. 背景介绍2. OpenLane数据集详细描述2.1 数据集特点2.2 坐标系定义 3. 使用方法4. 结论 1. 背景介绍 自动驾驶技术的发展日新月异,而3D车道感知是其核心之一。本文将深入介绍OpenLane数据集——迄今为止规模最大、最接近真实世界的3D车道数据集。我们将…...

CMakeList学习笔记
设置项目:project project(planning VERSION 1.0.0 LANGUAGES CXX) # 项目的名字 版本 1.1.0 编程语言 CXX 设置包含目录:include_directories、targer_include_directories 设置编译类型:add_executable、add_library add_executable(demo d…...
将git默认的编辑器设置为vin
git默认编辑器现状 如下,很多linux发行版,未加修改的情况下,git的默认编辑器使用起来不太方便 Signed-off-by: root <rootxxx.COM># Please enter the commit message for your changes. Lines starting # with # will be ignored, a…...

ros2_control 6 自由度机械臂
系列文章目录 前言 ros2_control 是一个实时控制框架,专为普通机器人应用而设计。标准的 c 接口用于与硬件交互和查询用户定义的控制器命令。这些接口增强了代码的模块化和与机器人无关的设计。具体的应用细节,例如使用什么控制器、机器人有多少个关节以…...
Python 在自动化中的实际应用:用 Python 简化繁琐任务
文章目录 1、概述2、自动化文件和目录管理3.数据处理与分析4.网页爬虫5. 系统管理6。定时任务7.结语 1、概述 这篇文章将深入探讨Python在自动化中的实际应用,帮助您用Python简化繁琐任务。 我们将从多个方面入手,展示如何利用Python进行文件管理、数据…...
解释 Spring 框架的核心模块(如 IoC 容器、AOP )及其工作原理。描述如何使用 Spring Boot 快速搭建一个 RESTful Web服务?
Spring框架是一个广泛使用的Java企业级应用程序开发框架,它提供了一系列的模块来帮助开发者构建健壮、可测试、可维护的应用程序。 其中,最核心的模块包括IoC容器和AOP(Aspect Oriented Programming,面向切面编程)。 …...
数据分析详解
一、数据分析教程 1. 入门教程 在线课程:如Coursera、Udemy、网易云课堂等平台提供了大量数据分析的入门课程,涵盖统计学基础、Python/R语言编程、数据可视化等内容。书籍推荐:《Python数据分析实战》、《R语言实战》等书籍是数据分析入门的…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...

GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
git: early EOF
macOS报错: Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...
土建施工员考试:建筑施工技术重点知识有哪些?
《管理实务》是土建施工员考试中侧重实操应用与管理能力的科目,核心考查施工组织、质量安全、进度成本等现场管理要点。以下是结合考试大纲与高频考点整理的重点内容,附学习方向和应试技巧: 一、施工组织与进度管理 核心目标: 规…...

react菜单,动态绑定点击事件,菜单分离出去单独的js文件,Ant框架
1、菜单文件treeTop.js // 顶部菜单 import { AppstoreOutlined, SettingOutlined } from ant-design/icons; // 定义菜单项数据 const treeTop [{label: Docker管理,key: 1,icon: <AppstoreOutlined />,url:"/docker/index"},{label: 权限管理,key: 2,icon:…...
【R语言编程——数据调用】
这里写自定义目录标题 可用库及数据集外部数据导入方法查看数据集信息 在R语言中,有多个库支持调用内置数据集或外部数据,包括studentdata等教学或示例数据集。以下是常见的库和方法: 可用库及数据集 openintro库 该库包含多个教学数据集&a…...

vue3 手动封装城市三级联动
要做的功能 示意图是这样的,因为后端给的数据结构 不足以使用ant-design组件 的联动查询组件 所以只能自己分装 组件 当然 这个数据后端给的不一样的情况下 可能组件内对应的 逻辑方式就不一样 毕竟是 三个 数组 省份 城市 区域 我直接粘贴组件代码了 <temp…...