当前位置: 首页 > news >正文

在occluded Person Re-ID中,选择clip还是ViT作为backbone?

        在遮挡行人再识别(Occluded Person Re-Identification, Occluded Person Re-ID)任务中,使用CLIP(Contrastive Language-Image Pre-Training)作为backbone和使用Vision Transformer(ViT)作为backbone各有其优缺点和特点。以下是对这两种方法的详细比较和介绍:

1. CLIP作为backbone

1.1CLIP简介

         CLIP是OpenAI提出的一种模型,旨在通过对大规模的图像和文本数据进行对比学习,实现图像和文本的相互理解。CLIP模型包含了一个图像编码器和一个文本编码器,通过对比学习(contrastive learning)方法训练,使得图像和文本在同一个向量空间中能够很好地对应。

1.21优势

  1. 多模态学习:CLIP通过同时学习图像和文本的表示,能够捕捉到更多的上下文信息和语义信息。这在处理复杂场景或遮挡问题时可以提供更多的信息支持。
  2. 预训练优势:CLIP经过大规模数据的预训练,具备了强大的表示能力,能够很好地捕捉图像的全局特征。
  3. 灵活性:可以将文本描述作为辅助信息,与图像一起输入模型,进一步提升识别性能。

1.3劣势

  1. 特定性不足:CLIP的设计初衷是通用的图像-文本对齐,在特定的行人再识别任务上,可能需要进一步的微调和优化。
  2. 计算复杂度:CLIP模型相对复杂,在实际部署时可能需要更多的计算资源。

2. Vision Transformer (ViT)作为backbone

2.1ViT简介

         Vision Transformer(ViT)是谷歌提出的一种模型,旨在将Transformer架构应用到计算机视觉任务中。ViT将图像切分成若干个patch(小块),并将这些patch作为输入,经过一系列的Transformer层进行处理。

2.2优势

  1. 局部和全局特征捕捉:ViT能够有效地捕捉图像的局部和全局特征,这在处理遮挡问题时尤为重要。
  2. 高效的表示学习:通过Transformer架构,ViT能够高效地学习图像的复杂特征表示。
  3. 可扩展性:ViT具有很强的可扩展性,可以通过增加Transformer层数来提升模型性能。

2.3劣势

  1. 数据需求量大:ViT通常需要大量的预训练数据来达到最佳性能,对于小数据集,可能表现不如一些传统的CNN架构。
  2. 训练难度:ViT的训练难度较高,尤其是在没有大规模预训练数据时,需要精心设计的训练策略。

3.哪种效果更好?

3.1具体效果比较

  1. 数据量和任务特定性:如果在行人再识别任务上,拥有大量的行人数据,ViT经过预训练和微调后可能表现更好,因为它能够捕捉到更细粒度的特征。如果数据量较小,CLIP可能会表现更好,因为其在大规模数据上预训练的特性使其具备更强的泛化能力。
  2. 遮挡处理:在处理遮挡问题时,ViT由于其能够捕捉局部和全局特征的优势,可能在处理复杂场景时有一定的优势。然而,CLIP的多模态特性也能提供更多的信息辅助,因此在特定场景下,结合文本描述的CLIP也可能表现出色。
  3. 计算资源:如果计算资源有限,可能需要考虑ViT的高计算需求。CLIP虽然也复杂,但在一些场景下可能更容易优化和部署。

        总的来说,选择哪种backbone需要根据具体的应用场景、数据量、计算资源等因素进行综合考虑。在某些场景下,结合两种模型的优势,进行模型融合也可能是提升性能的有效方法。

相关文章:

在occluded Person Re-ID中,选择clip还是ViT作为backbone?

在遮挡行人再识别(Occluded Person Re-Identification, Occluded Person Re-ID)任务中,使用CLIP(Contrastive Language-Image Pre-Training)作为backbone和使用Vision Transformer(ViT)作为back…...

Linuxnat网络配置

📑打牌 : da pai ge的个人主页 🌤️个人专栏 : da pai ge的博客专栏 ☁️宝剑锋从磨砺出,梅花香自苦寒来 ☁️运维工程师的职责:监…...

77.WEB渗透测试-信息收集-框架组件识别利用(1)

免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 内容参考于: 易锦网校会员专享课 上一个内容:76.WEB渗透测试-信息收集- WAF、框架组件识别(16) java&#xff…...

ExcelJS:轻松实现Excel文件的读取、操作与写入

文章目录 发现宝藏1. 简介2. 安装3. 创建工作簿4. 设置工作簿属性5. 添加工作表6.删除工作表7.访问工作表8. 列操作9. 行操作10. 单元格操作 发现宝藏 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【宝…...

Java 多线程技术详解

文章目录 Java 多线程技术详解目录引言多线程的概念为什么使用多线程?多线程的特征多线程的挑战 多线程的实现方式3.1 继承 Thread 类示例代码: 3.2 实现 Runnable 接口示例代码: 3.3 使用 Executor 框架示例代码: 3.4 使用 Calla…...

一份简单实用的MATLAB M语言编码风格指南

MATLAB M语言编码风格指南 1. 文件命名2. 函数命名3. 注释4. 变量命名5. 布局、注释和文档6. 代码结构7. 错误处理8. 性能优化9. 格式化输出 MATLAB M文件的编码规范对于确保代码的可读性、可维护性和一致性非常重要。下面是一份MATLAB M语言编码规范的建议,可以作为…...

ubuntu 环境下soc 使用qemu

构建vexpress-a9的linux内核 安装依赖的软件 sudo apt install u-boot-tools sudo apt install gcc-arm-linux-gnueabi sudo apt install g-arm-linux-gnueabi sudo apt install gcc#编译内核 下载 linux-5.10.14 linux-5.10.148.tar.gz 配置 sudo tar -xvf linux-5.10.1…...

Centos安装、迁移gitlab

Centos安装迁移gitlab 一、下载安装二、配置rb修改,起服务。三、访问web,个人偏好设置。四、数据迁移1、查看当前GitLab版本2、备份旧服务器的文件3、将上述备份文件拷贝到新服务器同一目录下,恢复GitLab4、停止新gitlab数据连接服务5、恢复备…...

【Python机器学习】朴素贝叶斯——使用Python进行文本分类

目录 准备文本:从文本中构建词向量 训练算法:从词向量计算概率 测试算法:根据现实情况修改分类器 准备数据:文档词袋模型 要从文本中获取特征,需要先拆分文本。这里的特征是来自文本的词条,一个词条是字…...

【linux】Shell脚本三剑客之grep和egrep命令的详细用法攻略

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全…...

Spring条件装配:灵活配置你的应用

文章目录 摘要1. 条件装配概述1.1 什么是条件装配1.2 为什么需要条件装配 2. 使用Conditional注解2.1 Conditional注解简介2.2 编写自定义条件类2.3 应用Conditional注解 3. 内置的条件注解3.1 ConditionalOnClass3.2 ConditionalOnMissingBean3.3 ConditionalOnProperty 4. 使…...

【前端 08】简单学习js字符串

JavaScript中的String对象详解 在JavaScript中,字符串(String)是一种非常基础且常用的数据类型,用于表示文本数据。虽然JavaScript中的字符串是原始数据类型,但它们的行为类似于对象,因为JavaScript为字符…...

【LLM】-07-提示工程-聊天机器人

目录 1、给定身份 1.1、基础代码 1.2、聊天机器人 2、构建上下文 3、订餐机器人 3.1、窗口可视化 3.2、构建机器人 3.3、创建JSON摘要 利用会话形式,与具有个性化特性(或专门为特定任务或行为设计)的聊天机器人进行深度对话。 在 Ch…...

AvaloniaUI的学习

相关网站 github:https://github.com/AvaloniaUI/Avalonia 官方中文文档:https://docs.avaloniaui.net/zh-Hans/docs/welcome IDE选择 VS2022VSCodeRider 以上三种我都尝试过,体验Rider最好。VS2022的提示功能不好,VSCode太慢&#xff0c…...

刷题——快速排序

【全网最清晰快速排序&#xff0c;看完快排思想和代码全部通透&#xff0c;不通透你打我&#xff01;-哔哩哔哩】 https://b23.tv/8GxEKIk 代码详解如上 #include <iostream> using namespace std;int getPort(int* a, int low, int high) {int port a[low];while(low…...

VPN,实时数据显示,多线程,pip,venv

VPN和翻墙在本质上是不同的。想要真正实现翻墙&#xff0c;需要选择部署在墙外的VPN服务。VPN也能隐藏用户的真实IP地址 要实现Python对网页数据的定时实时采集和输出&#xff0c;可以使用Python的定时任务调度模块。其中一个常用的库是APScheduler。您可以编写一个函数&#…...

自然语言处理(NLP)

自然语言处理&#xff08;NLP&#xff09;是计算机科学与人工智能领域的一个重要研究方向&#xff0c;它致力于让计算机能够理解、分析、处理和生成人类语言。在NLP领域&#xff0c;存在着许多常见的任务&#xff0c;这些任务通常对应着不同的算法和技术。以下将详细列举几个NL…...

Spring Boot集成Spire.doc实现对word的操作

1.什么是spire.doc? Spire.Doc for Java 是一款专业的 Java Word 组件&#xff0c;开发人员使用它可以轻松地将 Word 文档创建、读取、编辑、转换和打印等功能集成到自己的 Java 应用程序中。作为一款完全独立的组件&#xff0c;Spire.Doc for Java 的运行环境无需安装 Micro…...

在Spring Boot中优化if-else语句

在Spring Boot中&#xff0c;优化if-else语句是提升代码质量、增强可读性和可维护性的重要手段。过多的if-else语句不仅会使代码变得复杂难懂&#xff0c;还可能导致代码难以扩展和维护。以下将介绍七种在Spring Boot中优化if-else语句的实战方法&#xff0c;每种方法都将结合示…...

【Django】开源前端库bootstrap,常用

文章目录 下载bootstrap源文件到本地项目引入bootstrap文件 官网&#xff1a;https://www.bootcss.com/V4版本入口&#xff1a;https://v4.bootcss.com/V5版本入口&#xff1a;https://v5.bootcss.com/ 这里使用成熟的V4版本&#xff0c;中文文档地址&#xff1a;https://v4.b…...

uniapp 对接腾讯云IM群组成员管理(增删改查)

UniApp 实战&#xff1a;腾讯云IM群组成员管理&#xff08;增删改查&#xff09; 一、前言 在社交类App开发中&#xff0c;群组成员管理是核心功能之一。本文将基于UniApp框架&#xff0c;结合腾讯云IM SDK&#xff0c;详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...