在occluded Person Re-ID中,选择clip还是ViT作为backbone?
在遮挡行人再识别(Occluded Person Re-Identification, Occluded Person Re-ID)任务中,使用CLIP(Contrastive Language-Image Pre-Training)作为backbone和使用Vision Transformer(ViT)作为backbone各有其优缺点和特点。以下是对这两种方法的详细比较和介绍:
1. CLIP作为backbone
1.1CLIP简介:
CLIP是OpenAI提出的一种模型,旨在通过对大规模的图像和文本数据进行对比学习,实现图像和文本的相互理解。CLIP模型包含了一个图像编码器和一个文本编码器,通过对比学习(contrastive learning)方法训练,使得图像和文本在同一个向量空间中能够很好地对应。
1.21优势:
- 多模态学习:CLIP通过同时学习图像和文本的表示,能够捕捉到更多的上下文信息和语义信息。这在处理复杂场景或遮挡问题时可以提供更多的信息支持。
- 预训练优势:CLIP经过大规模数据的预训练,具备了强大的表示能力,能够很好地捕捉图像的全局特征。
- 灵活性:可以将文本描述作为辅助信息,与图像一起输入模型,进一步提升识别性能。
1.3劣势:
- 特定性不足:CLIP的设计初衷是通用的图像-文本对齐,在特定的行人再识别任务上,可能需要进一步的微调和优化。
- 计算复杂度:CLIP模型相对复杂,在实际部署时可能需要更多的计算资源。
2. Vision Transformer (ViT)作为backbone
2.1ViT简介:
Vision Transformer(ViT)是谷歌提出的一种模型,旨在将Transformer架构应用到计算机视觉任务中。ViT将图像切分成若干个patch(小块),并将这些patch作为输入,经过一系列的Transformer层进行处理。
2.2优势:
- 局部和全局特征捕捉:ViT能够有效地捕捉图像的局部和全局特征,这在处理遮挡问题时尤为重要。
- 高效的表示学习:通过Transformer架构,ViT能够高效地学习图像的复杂特征表示。
- 可扩展性:ViT具有很强的可扩展性,可以通过增加Transformer层数来提升模型性能。
2.3劣势:
- 数据需求量大:ViT通常需要大量的预训练数据来达到最佳性能,对于小数据集,可能表现不如一些传统的CNN架构。
- 训练难度:ViT的训练难度较高,尤其是在没有大规模预训练数据时,需要精心设计的训练策略。
3.哪种效果更好?
3.1具体效果比较:
- 数据量和任务特定性:如果在行人再识别任务上,拥有大量的行人数据,ViT经过预训练和微调后可能表现更好,因为它能够捕捉到更细粒度的特征。如果数据量较小,CLIP可能会表现更好,因为其在大规模数据上预训练的特性使其具备更强的泛化能力。
- 遮挡处理:在处理遮挡问题时,ViT由于其能够捕捉局部和全局特征的优势,可能在处理复杂场景时有一定的优势。然而,CLIP的多模态特性也能提供更多的信息辅助,因此在特定场景下,结合文本描述的CLIP也可能表现出色。
- 计算资源:如果计算资源有限,可能需要考虑ViT的高计算需求。CLIP虽然也复杂,但在一些场景下可能更容易优化和部署。
总的来说,选择哪种backbone需要根据具体的应用场景、数据量、计算资源等因素进行综合考虑。在某些场景下,结合两种模型的优势,进行模型融合也可能是提升性能的有效方法。
相关文章:
在occluded Person Re-ID中,选择clip还是ViT作为backbone?
在遮挡行人再识别(Occluded Person Re-Identification, Occluded Person Re-ID)任务中,使用CLIP(Contrastive Language-Image Pre-Training)作为backbone和使用Vision Transformer(ViT)作为back…...
Linuxnat网络配置
📑打牌 : da pai ge的个人主页 🌤️个人专栏 : da pai ge的博客专栏 ☁️宝剑锋从磨砺出,梅花香自苦寒来 ☁️运维工程师的职责:监…...
77.WEB渗透测试-信息收集-框架组件识别利用(1)
免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 内容参考于: 易锦网校会员专享课 上一个内容:76.WEB渗透测试-信息收集- WAF、框架组件识别(16) javaÿ…...
ExcelJS:轻松实现Excel文件的读取、操作与写入
文章目录 发现宝藏1. 简介2. 安装3. 创建工作簿4. 设置工作簿属性5. 添加工作表6.删除工作表7.访问工作表8. 列操作9. 行操作10. 单元格操作 发现宝藏 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【宝…...
Java 多线程技术详解
文章目录 Java 多线程技术详解目录引言多线程的概念为什么使用多线程?多线程的特征多线程的挑战 多线程的实现方式3.1 继承 Thread 类示例代码: 3.2 实现 Runnable 接口示例代码: 3.3 使用 Executor 框架示例代码: 3.4 使用 Calla…...
一份简单实用的MATLAB M语言编码风格指南
MATLAB M语言编码风格指南 1. 文件命名2. 函数命名3. 注释4. 变量命名5. 布局、注释和文档6. 代码结构7. 错误处理8. 性能优化9. 格式化输出 MATLAB M文件的编码规范对于确保代码的可读性、可维护性和一致性非常重要。下面是一份MATLAB M语言编码规范的建议,可以作为…...
ubuntu 环境下soc 使用qemu
构建vexpress-a9的linux内核 安装依赖的软件 sudo apt install u-boot-tools sudo apt install gcc-arm-linux-gnueabi sudo apt install g-arm-linux-gnueabi sudo apt install gcc#编译内核 下载 linux-5.10.14 linux-5.10.148.tar.gz 配置 sudo tar -xvf linux-5.10.1…...
Centos安装、迁移gitlab
Centos安装迁移gitlab 一、下载安装二、配置rb修改,起服务。三、访问web,个人偏好设置。四、数据迁移1、查看当前GitLab版本2、备份旧服务器的文件3、将上述备份文件拷贝到新服务器同一目录下,恢复GitLab4、停止新gitlab数据连接服务5、恢复备…...
【Python机器学习】朴素贝叶斯——使用Python进行文本分类
目录 准备文本:从文本中构建词向量 训练算法:从词向量计算概率 测试算法:根据现实情况修改分类器 准备数据:文档词袋模型 要从文本中获取特征,需要先拆分文本。这里的特征是来自文本的词条,一个词条是字…...
【linux】Shell脚本三剑客之grep和egrep命令的详细用法攻略
✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全…...
Spring条件装配:灵活配置你的应用
文章目录 摘要1. 条件装配概述1.1 什么是条件装配1.2 为什么需要条件装配 2. 使用Conditional注解2.1 Conditional注解简介2.2 编写自定义条件类2.3 应用Conditional注解 3. 内置的条件注解3.1 ConditionalOnClass3.2 ConditionalOnMissingBean3.3 ConditionalOnProperty 4. 使…...
【前端 08】简单学习js字符串
JavaScript中的String对象详解 在JavaScript中,字符串(String)是一种非常基础且常用的数据类型,用于表示文本数据。虽然JavaScript中的字符串是原始数据类型,但它们的行为类似于对象,因为JavaScript为字符…...
【LLM】-07-提示工程-聊天机器人
目录 1、给定身份 1.1、基础代码 1.2、聊天机器人 2、构建上下文 3、订餐机器人 3.1、窗口可视化 3.2、构建机器人 3.3、创建JSON摘要 利用会话形式,与具有个性化特性(或专门为特定任务或行为设计)的聊天机器人进行深度对话。 在 Ch…...
AvaloniaUI的学习
相关网站 github:https://github.com/AvaloniaUI/Avalonia 官方中文文档:https://docs.avaloniaui.net/zh-Hans/docs/welcome IDE选择 VS2022VSCodeRider 以上三种我都尝试过,体验Rider最好。VS2022的提示功能不好,VSCode太慢,…...
刷题——快速排序
【全网最清晰快速排序,看完快排思想和代码全部通透,不通透你打我!-哔哩哔哩】 https://b23.tv/8GxEKIk 代码详解如上 #include <iostream> using namespace std;int getPort(int* a, int low, int high) {int port a[low];while(low…...
VPN,实时数据显示,多线程,pip,venv
VPN和翻墙在本质上是不同的。想要真正实现翻墙,需要选择部署在墙外的VPN服务。VPN也能隐藏用户的真实IP地址 要实现Python对网页数据的定时实时采集和输出,可以使用Python的定时任务调度模块。其中一个常用的库是APScheduler。您可以编写一个函数&#…...
自然语言处理(NLP)
自然语言处理(NLP)是计算机科学与人工智能领域的一个重要研究方向,它致力于让计算机能够理解、分析、处理和生成人类语言。在NLP领域,存在着许多常见的任务,这些任务通常对应着不同的算法和技术。以下将详细列举几个NL…...
Spring Boot集成Spire.doc实现对word的操作
1.什么是spire.doc? Spire.Doc for Java 是一款专业的 Java Word 组件,开发人员使用它可以轻松地将 Word 文档创建、读取、编辑、转换和打印等功能集成到自己的 Java 应用程序中。作为一款完全独立的组件,Spire.Doc for Java 的运行环境无需安装 Micro…...
在Spring Boot中优化if-else语句
在Spring Boot中,优化if-else语句是提升代码质量、增强可读性和可维护性的重要手段。过多的if-else语句不仅会使代码变得复杂难懂,还可能导致代码难以扩展和维护。以下将介绍七种在Spring Boot中优化if-else语句的实战方法,每种方法都将结合示…...
【Django】开源前端库bootstrap,常用
文章目录 下载bootstrap源文件到本地项目引入bootstrap文件 官网:https://www.bootcss.com/V4版本入口:https://v4.bootcss.com/V5版本入口:https://v5.bootcss.com/ 这里使用成熟的V4版本,中文文档地址:https://v4.b…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
【Redis】笔记|第8节|大厂高并发缓存架构实战与优化
缓存架构 代码结构 代码详情 功能点: 多级缓存,先查本地缓存,再查Redis,最后才查数据库热点数据重建逻辑使用分布式锁,二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...
