自动控制:带死区的PID控制算法
带死区的PID控制算法
在计算机控制系统中,为了避免控制动作过于频繁,消除因频繁动作所引起的振荡,可采用带死区的PID控制。带死区的PID控制通过引入一个死区,使得在误差较小的范围内不进行控制动作,从而减少控制系统的频繁调整,提高系统的稳定性。
理论基础
传统PID控制算法
传统PID控制器的控制律为:
u ( t ) = K p e ( t ) + K i ∫ e ( t ) d t + K d d e ( t ) d t u(t) = K_p e(t) + K_i \int e(t) \, dt + K_d \frac{d e(t)}{dt} u(t)=Kpe(t)+Ki∫e(t)dt+Kddtde(t)
其中:
- u ( t ) u(t) u(t) 是控制输入
- e ( t ) = r ( t ) − y ( t ) e(t) = r(t) - y(t) e(t)=r(t)−y(t) 是误差信号
- K p K_p Kp 是比例增益
- K i K_i Ki 是积分增益
- K d K_d Kd 是微分增益
带死区的PID控制算法
带死区的PID控制器通过在误差信号上引入一个死区 δ \delta δ,使得在误差 e ( t ) e(t) e(t) 的绝对值小于死区 δ \delta δ 时,控制输入 u ( t ) u(t) u(t) 不进行调整。其控制律为:
u ( t ) = { K p e ( t ) + K i ∫ e ( t ) d t + K d d e ( t ) d t if ∣ e ( t ) ∣ > δ 0 if ∣ e ( t ) ∣ ≤ δ u(t) = \begin{cases} K_p e(t) + K_i \int e(t) \, dt + K_d \frac{d e(t)}{dt} & \text{if } |e(t)| > \delta \\ 0 & \text{if } |e(t)| \leq \delta \end{cases} u(t)={Kpe(t)+Ki∫e(t)dt+Kddtde(t)0if ∣e(t)∣>δif ∣e(t)∣≤δ
其中:
- δ \delta δ 是死区的阈值
公式推导
带死区的PID控制算法可以通过以下步骤推导得到:
- 定义误差信号:
e ( t ) = r ( t ) − y ( t ) e(t) = r(t) - y(t) e(t)=r(t)−y(t)
- 判断误差是否在死区范围内:
∣ e ( t ) ∣ ≤ δ |e(t)| \leq \delta ∣e(t)∣≤δ
- 根据误差范围计算控制输入:
u ( t ) = { K p e ( t ) + K i ∫ e ( t ) d t + K d d e ( t ) d t if ∣ e ( t ) ∣ > δ 0 if ∣ e ( t ) ∣ ≤ δ u(t) = \begin{cases} K_p e(t) + K_i \int e(t) \, dt + K_d \frac{d e(t)}{dt} & \text{if } |e(t)| > \delta \\ 0 & \text{if } |e(t)| \leq \delta \end{cases} u(t)={Kpe(t)+Ki∫e(t)dt+Kddtde(t)0if ∣e(t)∣>δif ∣e(t)∣≤δ
Python代码示例
下面是一个实现带死区的PID控制器的Python代码示例。假设我们有一个简单的温度控制系统,通过带死区的PID控制器保持系统温度在期望值。
import numpy as np
import matplotlib.pyplot as plt# 定义系统参数
dt = 0.1 # 时间步长
t = np.arange(0, 20, dt) # 时间数组
n = len(t)# 初始化状态变量
temperature = np.zeros(n) # 系统温度
desired_temperature = np.zeros(n) # 期望温度
desired_temperature[100:] = 50 # 期望温度从时间t=10s开始为50
external_disturbance = np.sin(t) * 5 # 外界扰动# 控制器参数
Kp = 2.0 # 比例增益
Ki = 1.0 # 积分增益
Kd = 0.5 # 微分增益
delta = 1.0 # 死区阈值# 初始化误差变量
e_prev = 0 # 上一时刻的误差
integral = 0 # 误差积分# 模拟系统
for i in range(1, n):# 计算误差e = desired_temperature[i] - temperature[i-1]# 判断误差是否在死区范围内if abs(e) > delta:# 误差积分integral += e * dt# 误差微分derivative = (e - e_prev) / dt# PID控制器u = Kp * e + Ki * integral + Kd * derivativeelse:u = 0 # 在死区范围内,控制输入为0# 更新系统温度temperature[i] = temperature[i-1] + (u + external_disturbance[i]) * dt# 更新上一时刻的误差e_prev = e# 绘制结果
plt.figure(figsize=(10, 4))
plt.plot(t, desired_temperature, label='Desired Temperature')
plt.plot(t, temperature, label='Actual Temperature')
plt.plot(t, external_disturbance, label='External Disturbance')
plt.xlabel('Time [s]')
plt.ylabel('Temperature')
plt.legend()
plt.title('Dead Zone PID Control for Temperature System')
plt.grid(True)
plt.show()

代码解释
- 系统参数和时间数组:定义了时间步长
dt和时间数组t,用来模拟系统在一段时间内的行为。 - 状态变量初始化:初始化了系统温度
temperature、期望温度desired_temperature和外界扰动external_disturbance。 - 控制器参数:定义了带死区的PID控制器的比例增益
Kp、积分增益Ki、微分增益Kd和死区阈值delta。 - 误差变量初始化:初始化了上一时刻的误差
e_prev和误差积分integral。 - 系统模拟:通过迭代计算,在每个时间步长内根据带死区的PID控制律计算控制输入,并更新系统温度。
- 结果绘制:使用
matplotlib绘制系统温度、期望温度和外界扰动的变化曲线。
结论
带死区的PID控制器通过在误差信号上引入一个死区,有效减少了控制系统的频繁调整,避免了因频繁动作所引起的系统振荡,从而提高了系统的稳定性。在实际应用中,带死区的PID控制器适用于控制量需要频繁调整的场合,能够显著改善系统的动态特性。结合Python代码示例,可以更直观地理解带死区的PID控制器的基本原理和实现方法。
相关文章:
自动控制:带死区的PID控制算法
带死区的PID控制算法 在计算机控制系统中,为了避免控制动作过于频繁,消除因频繁动作所引起的振荡,可采用带死区的PID控制。带死区的PID控制通过引入一个死区,使得在误差较小的范围内不进行控制动作,从而减少控制系统的…...
橙单后端项目下载编译遇到的问题与解决
今天下载orange-admin项目,不过下载下来运行出现一些问题。 1、涉及到XMLStreamException的几个类都出现下面的错误 The package javax.xml.stream is accessible from more than one module: <unnamed>, java.xml ctrl-shift-t 可以找到这个引入是哪些包里…...
EasyExcel 初使用—— Java 实现多种写入 Excel 功能
前言 大家好,我是雪荷。之前有一篇博客(EasyExcel 初使用—— Java 实现读取 Excel 功能_java easyexcel.read-CSDN博客)介绍了 Java 如何读取 Excel 表格,那么此篇博客就和大家介绍下 Java 如何利用 EasyExcel 写入 Excel。 Ea…...
MySQL 和 SQL Server 中的连表更新 UPDATE JOIN 写法比较
MySQL 和 SQL Server 中的连表更新 UPDATE JOIN 写法比较 一、前言1. MySQL 写法1.1 解释 2. SQL Server 写法2.1 解释 二、总结 一、前言 在关系型数据库管理系统(RDBMS)中,使用 UPDATE 语句进行表格更新是非常常见的操作。特别是当需要根据…...
手把手教你FL Studio 24.1.1.4234中文破解安装激活图文激活教程
在数字化音乐制作的浪潮中,FL Studio 24.1.1.4234中文破解版的发布无疑又掀起了一股新的热潮。这款由Image-Line公司开发的数字音频工作站(DAW)软件,以其强大的功能和易用的界面,赢得了全球无数音乐制作人的青睐。本文…...
使用Spring Boot与Spire.Doc实现Word文档的多样化操作
博客主页: 南来_北往 系列专栏:Spring Boot实战 前言 使用Spring Boot与Spire.Doc实现Word文档的多样化操作具有以下优势: 强大的功能组合:Spring Boot提供了快速构建独立和生产级的Spring应用程序的能力,而Spire.Doc则…...
从食堂采购系统源码到成品:打造供应链采购管理平台实战详解
本篇文章,笔者将详细介绍如何从食堂采购系统的源码开始,逐步打造一个完备的供应链采购管理平台,帮助企业实现采购流程的智能化和高效化。 一、需求分析与规划 一般来说,食堂采购系统需要具备以下基本功能: 1.供应商…...
在window将Redis注册为服务
将redis注册为系统服务,开启自启动 安装服务 默认注册完之后会自动启动,在window中的服务看一下,如果启动类型为自动,状态是自动运行则启动完成。如果是手动,需要右键属性调整为自动,在点击启动,…...
PHP商城案例
http://www.e9933.com/...
Linux:bash在被调用时会读取哪些启动文件?
(本文基于5.1-6ubuntu1.1版本的bash) bash在被调用时会读取哪些启动文件?要回答这个问题,首先要弄清楚两个概念:login shell和interactive shell。 login shell login shell是指这样的shell: 第一个命令行参数(进程…...
帆软FineReport之替换函数
在日常帆软FineReport中经常会使用字符串替换函数,记录下来,方便备查。 一、字符串替换 第一种、指定文本替换 使用SUBSTITUTE函数,语法如下所示 SUBSTITUTE(text,old_text,new_text,instance_num) 字段…...
Redis的应用场景及类型
目录 一、Redis的应用场景 1、限流 2、分布式锁 3、点赞 4、消息队列 二、Redis类型的命令及用法 1、String类型 2、Hash类型 3、List类型 4、Set类型 5、Zset类型 6、Redis工具类 Redis使用缓存的目的就是提升读写性能 实际业务场景下,我们就可以把 Mys…...
【图像处理】不智能的目标识别
目录 目标识别的划分 识别入门 概念学习 滤波 模版 阈值化 形态学操作 开运算 闭运算 编程语言 示例 大家有没有想过在没有人工智能或者说没有机器学习的的时候,计算机是怎么做目标识别的? 计算机视觉时至今日也是急需人才的领域&…...
《500 Lines or Less》(5)异步爬虫
https://aosabook.org/en/500L/a-web-crawler-with-asyncio-coroutines.html ——A. Jesse Jiryu Davis and Guido van Rossum 介绍 网络程序消耗的不是计算资源,而是打开许多缓慢的连接,解决此问题的现代方法是异步IO。 本章介绍一个简单的网络爬虫&a…...
Transformer!自注意力机制的高层级理解Attention Is All You Need!
背景 最近在不断深入学习LLM的相关内容,那么transformer就是一个绕不开的话题。然而对于一个NLP门外汉来说,论文看得是真头疼,总览全网,我们似乎缺少一个至高而下的高层级理解。所以本文就来弥补此方面的缺失~ 本文并不讲解有关…...
关于使用Postman在请求https网址没有响应,但是用浏览器有响应的问题解决
一、问题描述 使用postman调用正式环境的公共接口,无需鉴权,但是产生了返回状态码200,但是data中却无数据,如下 {"code": "200","message": "操作成功","data": {"qr_c…...
【React 】开发环境搭建详细指南
文章目录 一、准备工作1. 安装 Node.js 和 npm2. 选择代码编辑器 二、创建 React 项目1. 使用 Create React App2. 手动配置 React 项目 三、集成开发工具1. ESLint 和 Prettier2. 使用 Git 进行版本控制 在现代前端开发中,React 是一个非常流行的框架,用…...
结构体笔记
结构体 C语言中的数据类型: 基本数据类型:char/int/short/double/float/long 构造数据类型:数组,指针,结构体,共用体,枚举 概念: 结构体是用户自定义的一种数据类型,…...
Elasticsearch:Golang ECS 日志记录 - zerolog
ECS 记录器是你最喜欢的日志库的格式化程序/编码器插件。它们可让你轻松地将日志格式化为与 ECS 兼容的 JSON。在本教程中,我将详述如何 编码器以 JSON 格式记录日志,并以 ECS 错误格式处理错误字段的记录。 默认情况下,会添加以下字段&…...
Ip2region - 基于xdb离线库的Java IP查询工具提供给脚本调用
文章目录 Pre效果实现git clone编译测试程序将ip2region.xdb放到指定目录使用改进最终效果 Pre OpenSource - Ip2region 离线IP地址定位库和IP定位数据管理框架 Ip2region - xdb java 查询客户端实现 效果 最终效果 实现 git clone git clone https://github.com/lionsou…...
使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...
Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...
微服务通信安全:深入解析mTLS的原理与实践
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言:微服务时代的通信安全挑战 随着云原生和微服务架构的普及,服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...
