自动控制:带死区的PID控制算法
带死区的PID控制算法
在计算机控制系统中,为了避免控制动作过于频繁,消除因频繁动作所引起的振荡,可采用带死区的PID控制。带死区的PID控制通过引入一个死区,使得在误差较小的范围内不进行控制动作,从而减少控制系统的频繁调整,提高系统的稳定性。
理论基础
传统PID控制算法
传统PID控制器的控制律为:
u ( t ) = K p e ( t ) + K i ∫ e ( t ) d t + K d d e ( t ) d t u(t) = K_p e(t) + K_i \int e(t) \, dt + K_d \frac{d e(t)}{dt} u(t)=Kpe(t)+Ki∫e(t)dt+Kddtde(t)
其中:
- u ( t ) u(t) u(t) 是控制输入
- e ( t ) = r ( t ) − y ( t ) e(t) = r(t) - y(t) e(t)=r(t)−y(t) 是误差信号
- K p K_p Kp 是比例增益
- K i K_i Ki 是积分增益
- K d K_d Kd 是微分增益
带死区的PID控制算法
带死区的PID控制器通过在误差信号上引入一个死区 δ \delta δ,使得在误差 e ( t ) e(t) e(t) 的绝对值小于死区 δ \delta δ 时,控制输入 u ( t ) u(t) u(t) 不进行调整。其控制律为:
u ( t ) = { K p e ( t ) + K i ∫ e ( t ) d t + K d d e ( t ) d t if ∣ e ( t ) ∣ > δ 0 if ∣ e ( t ) ∣ ≤ δ u(t) = \begin{cases} K_p e(t) + K_i \int e(t) \, dt + K_d \frac{d e(t)}{dt} & \text{if } |e(t)| > \delta \\ 0 & \text{if } |e(t)| \leq \delta \end{cases} u(t)={Kpe(t)+Ki∫e(t)dt+Kddtde(t)0if ∣e(t)∣>δif ∣e(t)∣≤δ
其中:
- δ \delta δ 是死区的阈值
公式推导
带死区的PID控制算法可以通过以下步骤推导得到:
- 定义误差信号:
e ( t ) = r ( t ) − y ( t ) e(t) = r(t) - y(t) e(t)=r(t)−y(t)
- 判断误差是否在死区范围内:
∣ e ( t ) ∣ ≤ δ |e(t)| \leq \delta ∣e(t)∣≤δ
- 根据误差范围计算控制输入:
u ( t ) = { K p e ( t ) + K i ∫ e ( t ) d t + K d d e ( t ) d t if ∣ e ( t ) ∣ > δ 0 if ∣ e ( t ) ∣ ≤ δ u(t) = \begin{cases} K_p e(t) + K_i \int e(t) \, dt + K_d \frac{d e(t)}{dt} & \text{if } |e(t)| > \delta \\ 0 & \text{if } |e(t)| \leq \delta \end{cases} u(t)={Kpe(t)+Ki∫e(t)dt+Kddtde(t)0if ∣e(t)∣>δif ∣e(t)∣≤δ
Python代码示例
下面是一个实现带死区的PID控制器的Python代码示例。假设我们有一个简单的温度控制系统,通过带死区的PID控制器保持系统温度在期望值。
import numpy as np
import matplotlib.pyplot as plt# 定义系统参数
dt = 0.1 # 时间步长
t = np.arange(0, 20, dt) # 时间数组
n = len(t)# 初始化状态变量
temperature = np.zeros(n) # 系统温度
desired_temperature = np.zeros(n) # 期望温度
desired_temperature[100:] = 50 # 期望温度从时间t=10s开始为50
external_disturbance = np.sin(t) * 5 # 外界扰动# 控制器参数
Kp = 2.0 # 比例增益
Ki = 1.0 # 积分增益
Kd = 0.5 # 微分增益
delta = 1.0 # 死区阈值# 初始化误差变量
e_prev = 0 # 上一时刻的误差
integral = 0 # 误差积分# 模拟系统
for i in range(1, n):# 计算误差e = desired_temperature[i] - temperature[i-1]# 判断误差是否在死区范围内if abs(e) > delta:# 误差积分integral += e * dt# 误差微分derivative = (e - e_prev) / dt# PID控制器u = Kp * e + Ki * integral + Kd * derivativeelse:u = 0 # 在死区范围内,控制输入为0# 更新系统温度temperature[i] = temperature[i-1] + (u + external_disturbance[i]) * dt# 更新上一时刻的误差e_prev = e# 绘制结果
plt.figure(figsize=(10, 4))
plt.plot(t, desired_temperature, label='Desired Temperature')
plt.plot(t, temperature, label='Actual Temperature')
plt.plot(t, external_disturbance, label='External Disturbance')
plt.xlabel('Time [s]')
plt.ylabel('Temperature')
plt.legend()
plt.title('Dead Zone PID Control for Temperature System')
plt.grid(True)
plt.show()
代码解释
- 系统参数和时间数组:定义了时间步长
dt
和时间数组t
,用来模拟系统在一段时间内的行为。 - 状态变量初始化:初始化了系统温度
temperature
、期望温度desired_temperature
和外界扰动external_disturbance
。 - 控制器参数:定义了带死区的PID控制器的比例增益
Kp
、积分增益Ki
、微分增益Kd
和死区阈值delta
。 - 误差变量初始化:初始化了上一时刻的误差
e_prev
和误差积分integral
。 - 系统模拟:通过迭代计算,在每个时间步长内根据带死区的PID控制律计算控制输入,并更新系统温度。
- 结果绘制:使用
matplotlib
绘制系统温度、期望温度和外界扰动的变化曲线。
结论
带死区的PID控制器通过在误差信号上引入一个死区,有效减少了控制系统的频繁调整,避免了因频繁动作所引起的系统振荡,从而提高了系统的稳定性。在实际应用中,带死区的PID控制器适用于控制量需要频繁调整的场合,能够显著改善系统的动态特性。结合Python代码示例,可以更直观地理解带死区的PID控制器的基本原理和实现方法。
相关文章:

自动控制:带死区的PID控制算法
带死区的PID控制算法 在计算机控制系统中,为了避免控制动作过于频繁,消除因频繁动作所引起的振荡,可采用带死区的PID控制。带死区的PID控制通过引入一个死区,使得在误差较小的范围内不进行控制动作,从而减少控制系统的…...

橙单后端项目下载编译遇到的问题与解决
今天下载orange-admin项目,不过下载下来运行出现一些问题。 1、涉及到XMLStreamException的几个类都出现下面的错误 The package javax.xml.stream is accessible from more than one module: <unnamed>, java.xml ctrl-shift-t 可以找到这个引入是哪些包里…...

EasyExcel 初使用—— Java 实现多种写入 Excel 功能
前言 大家好,我是雪荷。之前有一篇博客(EasyExcel 初使用—— Java 实现读取 Excel 功能_java easyexcel.read-CSDN博客)介绍了 Java 如何读取 Excel 表格,那么此篇博客就和大家介绍下 Java 如何利用 EasyExcel 写入 Excel。 Ea…...
MySQL 和 SQL Server 中的连表更新 UPDATE JOIN 写法比较
MySQL 和 SQL Server 中的连表更新 UPDATE JOIN 写法比较 一、前言1. MySQL 写法1.1 解释 2. SQL Server 写法2.1 解释 二、总结 一、前言 在关系型数据库管理系统(RDBMS)中,使用 UPDATE 语句进行表格更新是非常常见的操作。特别是当需要根据…...

手把手教你FL Studio 24.1.1.4234中文破解安装激活图文激活教程
在数字化音乐制作的浪潮中,FL Studio 24.1.1.4234中文破解版的发布无疑又掀起了一股新的热潮。这款由Image-Line公司开发的数字音频工作站(DAW)软件,以其强大的功能和易用的界面,赢得了全球无数音乐制作人的青睐。本文…...

使用Spring Boot与Spire.Doc实现Word文档的多样化操作
博客主页: 南来_北往 系列专栏:Spring Boot实战 前言 使用Spring Boot与Spire.Doc实现Word文档的多样化操作具有以下优势: 强大的功能组合:Spring Boot提供了快速构建独立和生产级的Spring应用程序的能力,而Spire.Doc则…...

从食堂采购系统源码到成品:打造供应链采购管理平台实战详解
本篇文章,笔者将详细介绍如何从食堂采购系统的源码开始,逐步打造一个完备的供应链采购管理平台,帮助企业实现采购流程的智能化和高效化。 一、需求分析与规划 一般来说,食堂采购系统需要具备以下基本功能: 1.供应商…...

在window将Redis注册为服务
将redis注册为系统服务,开启自启动 安装服务 默认注册完之后会自动启动,在window中的服务看一下,如果启动类型为自动,状态是自动运行则启动完成。如果是手动,需要右键属性调整为自动,在点击启动,…...
PHP商城案例
http://www.e9933.com/...
Linux:bash在被调用时会读取哪些启动文件?
(本文基于5.1-6ubuntu1.1版本的bash) bash在被调用时会读取哪些启动文件?要回答这个问题,首先要弄清楚两个概念:login shell和interactive shell。 login shell login shell是指这样的shell: 第一个命令行参数(进程…...
帆软FineReport之替换函数
在日常帆软FineReport中经常会使用字符串替换函数,记录下来,方便备查。 一、字符串替换 第一种、指定文本替换 使用SUBSTITUTE函数,语法如下所示 SUBSTITUTE(text,old_text,new_text,instance_num) 字段…...

Redis的应用场景及类型
目录 一、Redis的应用场景 1、限流 2、分布式锁 3、点赞 4、消息队列 二、Redis类型的命令及用法 1、String类型 2、Hash类型 3、List类型 4、Set类型 5、Zset类型 6、Redis工具类 Redis使用缓存的目的就是提升读写性能 实际业务场景下,我们就可以把 Mys…...
【图像处理】不智能的目标识别
目录 目标识别的划分 识别入门 概念学习 滤波 模版 阈值化 形态学操作 开运算 闭运算 编程语言 示例 大家有没有想过在没有人工智能或者说没有机器学习的的时候,计算机是怎么做目标识别的? 计算机视觉时至今日也是急需人才的领域&…...

《500 Lines or Less》(5)异步爬虫
https://aosabook.org/en/500L/a-web-crawler-with-asyncio-coroutines.html ——A. Jesse Jiryu Davis and Guido van Rossum 介绍 网络程序消耗的不是计算资源,而是打开许多缓慢的连接,解决此问题的现代方法是异步IO。 本章介绍一个简单的网络爬虫&a…...
Transformer!自注意力机制的高层级理解Attention Is All You Need!
背景 最近在不断深入学习LLM的相关内容,那么transformer就是一个绕不开的话题。然而对于一个NLP门外汉来说,论文看得是真头疼,总览全网,我们似乎缺少一个至高而下的高层级理解。所以本文就来弥补此方面的缺失~ 本文并不讲解有关…...

关于使用Postman在请求https网址没有响应,但是用浏览器有响应的问题解决
一、问题描述 使用postman调用正式环境的公共接口,无需鉴权,但是产生了返回状态码200,但是data中却无数据,如下 {"code": "200","message": "操作成功","data": {"qr_c…...

【React 】开发环境搭建详细指南
文章目录 一、准备工作1. 安装 Node.js 和 npm2. 选择代码编辑器 二、创建 React 项目1. 使用 Create React App2. 手动配置 React 项目 三、集成开发工具1. ESLint 和 Prettier2. 使用 Git 进行版本控制 在现代前端开发中,React 是一个非常流行的框架,用…...

结构体笔记
结构体 C语言中的数据类型: 基本数据类型:char/int/short/double/float/long 构造数据类型:数组,指针,结构体,共用体,枚举 概念: 结构体是用户自定义的一种数据类型,…...
Elasticsearch:Golang ECS 日志记录 - zerolog
ECS 记录器是你最喜欢的日志库的格式化程序/编码器插件。它们可让你轻松地将日志格式化为与 ECS 兼容的 JSON。在本教程中,我将详述如何 编码器以 JSON 格式记录日志,并以 ECS 错误格式处理错误字段的记录。 默认情况下,会添加以下字段&…...

Ip2region - 基于xdb离线库的Java IP查询工具提供给脚本调用
文章目录 Pre效果实现git clone编译测试程序将ip2region.xdb放到指定目录使用改进最终效果 Pre OpenSource - Ip2region 离线IP地址定位库和IP定位数据管理框架 Ip2region - xdb java 查询客户端实现 效果 最终效果 实现 git clone git clone https://github.com/lionsou…...

大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...