自动控制:带死区的PID控制算法
带死区的PID控制算法
在计算机控制系统中,为了避免控制动作过于频繁,消除因频繁动作所引起的振荡,可采用带死区的PID控制。带死区的PID控制通过引入一个死区,使得在误差较小的范围内不进行控制动作,从而减少控制系统的频繁调整,提高系统的稳定性。
理论基础
传统PID控制算法
传统PID控制器的控制律为:
u ( t ) = K p e ( t ) + K i ∫ e ( t ) d t + K d d e ( t ) d t u(t) = K_p e(t) + K_i \int e(t) \, dt + K_d \frac{d e(t)}{dt} u(t)=Kpe(t)+Ki∫e(t)dt+Kddtde(t)
其中:
- u ( t ) u(t) u(t) 是控制输入
- e ( t ) = r ( t ) − y ( t ) e(t) = r(t) - y(t) e(t)=r(t)−y(t) 是误差信号
- K p K_p Kp 是比例增益
- K i K_i Ki 是积分增益
- K d K_d Kd 是微分增益
带死区的PID控制算法
带死区的PID控制器通过在误差信号上引入一个死区 δ \delta δ,使得在误差 e ( t ) e(t) e(t) 的绝对值小于死区 δ \delta δ 时,控制输入 u ( t ) u(t) u(t) 不进行调整。其控制律为:
u ( t ) = { K p e ( t ) + K i ∫ e ( t ) d t + K d d e ( t ) d t if ∣ e ( t ) ∣ > δ 0 if ∣ e ( t ) ∣ ≤ δ u(t) = \begin{cases} K_p e(t) + K_i \int e(t) \, dt + K_d \frac{d e(t)}{dt} & \text{if } |e(t)| > \delta \\ 0 & \text{if } |e(t)| \leq \delta \end{cases} u(t)={Kpe(t)+Ki∫e(t)dt+Kddtde(t)0if ∣e(t)∣>δif ∣e(t)∣≤δ
其中:
- δ \delta δ 是死区的阈值
公式推导
带死区的PID控制算法可以通过以下步骤推导得到:
- 定义误差信号:
e ( t ) = r ( t ) − y ( t ) e(t) = r(t) - y(t) e(t)=r(t)−y(t)
- 判断误差是否在死区范围内:
∣ e ( t ) ∣ ≤ δ |e(t)| \leq \delta ∣e(t)∣≤δ
- 根据误差范围计算控制输入:
u ( t ) = { K p e ( t ) + K i ∫ e ( t ) d t + K d d e ( t ) d t if ∣ e ( t ) ∣ > δ 0 if ∣ e ( t ) ∣ ≤ δ u(t) = \begin{cases} K_p e(t) + K_i \int e(t) \, dt + K_d \frac{d e(t)}{dt} & \text{if } |e(t)| > \delta \\ 0 & \text{if } |e(t)| \leq \delta \end{cases} u(t)={Kpe(t)+Ki∫e(t)dt+Kddtde(t)0if ∣e(t)∣>δif ∣e(t)∣≤δ
Python代码示例
下面是一个实现带死区的PID控制器的Python代码示例。假设我们有一个简单的温度控制系统,通过带死区的PID控制器保持系统温度在期望值。
import numpy as np
import matplotlib.pyplot as plt# 定义系统参数
dt = 0.1 # 时间步长
t = np.arange(0, 20, dt) # 时间数组
n = len(t)# 初始化状态变量
temperature = np.zeros(n) # 系统温度
desired_temperature = np.zeros(n) # 期望温度
desired_temperature[100:] = 50 # 期望温度从时间t=10s开始为50
external_disturbance = np.sin(t) * 5 # 外界扰动# 控制器参数
Kp = 2.0 # 比例增益
Ki = 1.0 # 积分增益
Kd = 0.5 # 微分增益
delta = 1.0 # 死区阈值# 初始化误差变量
e_prev = 0 # 上一时刻的误差
integral = 0 # 误差积分# 模拟系统
for i in range(1, n):# 计算误差e = desired_temperature[i] - temperature[i-1]# 判断误差是否在死区范围内if abs(e) > delta:# 误差积分integral += e * dt# 误差微分derivative = (e - e_prev) / dt# PID控制器u = Kp * e + Ki * integral + Kd * derivativeelse:u = 0 # 在死区范围内,控制输入为0# 更新系统温度temperature[i] = temperature[i-1] + (u + external_disturbance[i]) * dt# 更新上一时刻的误差e_prev = e# 绘制结果
plt.figure(figsize=(10, 4))
plt.plot(t, desired_temperature, label='Desired Temperature')
plt.plot(t, temperature, label='Actual Temperature')
plt.plot(t, external_disturbance, label='External Disturbance')
plt.xlabel('Time [s]')
plt.ylabel('Temperature')
plt.legend()
plt.title('Dead Zone PID Control for Temperature System')
plt.grid(True)
plt.show()

代码解释
- 系统参数和时间数组:定义了时间步长
dt和时间数组t,用来模拟系统在一段时间内的行为。 - 状态变量初始化:初始化了系统温度
temperature、期望温度desired_temperature和外界扰动external_disturbance。 - 控制器参数:定义了带死区的PID控制器的比例增益
Kp、积分增益Ki、微分增益Kd和死区阈值delta。 - 误差变量初始化:初始化了上一时刻的误差
e_prev和误差积分integral。 - 系统模拟:通过迭代计算,在每个时间步长内根据带死区的PID控制律计算控制输入,并更新系统温度。
- 结果绘制:使用
matplotlib绘制系统温度、期望温度和外界扰动的变化曲线。
结论
带死区的PID控制器通过在误差信号上引入一个死区,有效减少了控制系统的频繁调整,避免了因频繁动作所引起的系统振荡,从而提高了系统的稳定性。在实际应用中,带死区的PID控制器适用于控制量需要频繁调整的场合,能够显著改善系统的动态特性。结合Python代码示例,可以更直观地理解带死区的PID控制器的基本原理和实现方法。
相关文章:
自动控制:带死区的PID控制算法
带死区的PID控制算法 在计算机控制系统中,为了避免控制动作过于频繁,消除因频繁动作所引起的振荡,可采用带死区的PID控制。带死区的PID控制通过引入一个死区,使得在误差较小的范围内不进行控制动作,从而减少控制系统的…...
橙单后端项目下载编译遇到的问题与解决
今天下载orange-admin项目,不过下载下来运行出现一些问题。 1、涉及到XMLStreamException的几个类都出现下面的错误 The package javax.xml.stream is accessible from more than one module: <unnamed>, java.xml ctrl-shift-t 可以找到这个引入是哪些包里…...
EasyExcel 初使用—— Java 实现多种写入 Excel 功能
前言 大家好,我是雪荷。之前有一篇博客(EasyExcel 初使用—— Java 实现读取 Excel 功能_java easyexcel.read-CSDN博客)介绍了 Java 如何读取 Excel 表格,那么此篇博客就和大家介绍下 Java 如何利用 EasyExcel 写入 Excel。 Ea…...
MySQL 和 SQL Server 中的连表更新 UPDATE JOIN 写法比较
MySQL 和 SQL Server 中的连表更新 UPDATE JOIN 写法比较 一、前言1. MySQL 写法1.1 解释 2. SQL Server 写法2.1 解释 二、总结 一、前言 在关系型数据库管理系统(RDBMS)中,使用 UPDATE 语句进行表格更新是非常常见的操作。特别是当需要根据…...
手把手教你FL Studio 24.1.1.4234中文破解安装激活图文激活教程
在数字化音乐制作的浪潮中,FL Studio 24.1.1.4234中文破解版的发布无疑又掀起了一股新的热潮。这款由Image-Line公司开发的数字音频工作站(DAW)软件,以其强大的功能和易用的界面,赢得了全球无数音乐制作人的青睐。本文…...
使用Spring Boot与Spire.Doc实现Word文档的多样化操作
博客主页: 南来_北往 系列专栏:Spring Boot实战 前言 使用Spring Boot与Spire.Doc实现Word文档的多样化操作具有以下优势: 强大的功能组合:Spring Boot提供了快速构建独立和生产级的Spring应用程序的能力,而Spire.Doc则…...
从食堂采购系统源码到成品:打造供应链采购管理平台实战详解
本篇文章,笔者将详细介绍如何从食堂采购系统的源码开始,逐步打造一个完备的供应链采购管理平台,帮助企业实现采购流程的智能化和高效化。 一、需求分析与规划 一般来说,食堂采购系统需要具备以下基本功能: 1.供应商…...
在window将Redis注册为服务
将redis注册为系统服务,开启自启动 安装服务 默认注册完之后会自动启动,在window中的服务看一下,如果启动类型为自动,状态是自动运行则启动完成。如果是手动,需要右键属性调整为自动,在点击启动,…...
PHP商城案例
http://www.e9933.com/...
Linux:bash在被调用时会读取哪些启动文件?
(本文基于5.1-6ubuntu1.1版本的bash) bash在被调用时会读取哪些启动文件?要回答这个问题,首先要弄清楚两个概念:login shell和interactive shell。 login shell login shell是指这样的shell: 第一个命令行参数(进程…...
帆软FineReport之替换函数
在日常帆软FineReport中经常会使用字符串替换函数,记录下来,方便备查。 一、字符串替换 第一种、指定文本替换 使用SUBSTITUTE函数,语法如下所示 SUBSTITUTE(text,old_text,new_text,instance_num) 字段…...
Redis的应用场景及类型
目录 一、Redis的应用场景 1、限流 2、分布式锁 3、点赞 4、消息队列 二、Redis类型的命令及用法 1、String类型 2、Hash类型 3、List类型 4、Set类型 5、Zset类型 6、Redis工具类 Redis使用缓存的目的就是提升读写性能 实际业务场景下,我们就可以把 Mys…...
【图像处理】不智能的目标识别
目录 目标识别的划分 识别入门 概念学习 滤波 模版 阈值化 形态学操作 开运算 闭运算 编程语言 示例 大家有没有想过在没有人工智能或者说没有机器学习的的时候,计算机是怎么做目标识别的? 计算机视觉时至今日也是急需人才的领域&…...
《500 Lines or Less》(5)异步爬虫
https://aosabook.org/en/500L/a-web-crawler-with-asyncio-coroutines.html ——A. Jesse Jiryu Davis and Guido van Rossum 介绍 网络程序消耗的不是计算资源,而是打开许多缓慢的连接,解决此问题的现代方法是异步IO。 本章介绍一个简单的网络爬虫&a…...
Transformer!自注意力机制的高层级理解Attention Is All You Need!
背景 最近在不断深入学习LLM的相关内容,那么transformer就是一个绕不开的话题。然而对于一个NLP门外汉来说,论文看得是真头疼,总览全网,我们似乎缺少一个至高而下的高层级理解。所以本文就来弥补此方面的缺失~ 本文并不讲解有关…...
关于使用Postman在请求https网址没有响应,但是用浏览器有响应的问题解决
一、问题描述 使用postman调用正式环境的公共接口,无需鉴权,但是产生了返回状态码200,但是data中却无数据,如下 {"code": "200","message": "操作成功","data": {"qr_c…...
【React 】开发环境搭建详细指南
文章目录 一、准备工作1. 安装 Node.js 和 npm2. 选择代码编辑器 二、创建 React 项目1. 使用 Create React App2. 手动配置 React 项目 三、集成开发工具1. ESLint 和 Prettier2. 使用 Git 进行版本控制 在现代前端开发中,React 是一个非常流行的框架,用…...
结构体笔记
结构体 C语言中的数据类型: 基本数据类型:char/int/short/double/float/long 构造数据类型:数组,指针,结构体,共用体,枚举 概念: 结构体是用户自定义的一种数据类型,…...
Elasticsearch:Golang ECS 日志记录 - zerolog
ECS 记录器是你最喜欢的日志库的格式化程序/编码器插件。它们可让你轻松地将日志格式化为与 ECS 兼容的 JSON。在本教程中,我将详述如何 编码器以 JSON 格式记录日志,并以 ECS 错误格式处理错误字段的记录。 默认情况下,会添加以下字段&…...
Ip2region - 基于xdb离线库的Java IP查询工具提供给脚本调用
文章目录 Pre效果实现git clone编译测试程序将ip2region.xdb放到指定目录使用改进最终效果 Pre OpenSource - Ip2region 离线IP地址定位库和IP定位数据管理框架 Ip2region - xdb java 查询客户端实现 效果 最终效果 实现 git clone git clone https://github.com/lionsou…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
协议转换利器,profinet转ethercat网关的两大派系,各有千秋
随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...
Modbus RTU与Modbus TCP详解指南
目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...
快速排序算法改进:随机快排-荷兰国旗划分详解
随机快速排序-荷兰国旗划分算法详解 一、基础知识回顾1.1 快速排序简介1.2 荷兰国旗问题 二、随机快排 - 荷兰国旗划分原理2.1 随机化枢轴选择2.2 荷兰国旗划分过程2.3 结合随机快排与荷兰国旗划分 三、代码实现3.1 Python实现3.2 Java实现3.3 C实现 四、性能分析4.1 时间复杂度…...
boost::filesystem::path文件路径使用详解和示例
boost::filesystem::path 是 Boost 库中用于跨平台操作文件路径的类,封装了路径的拼接、分割、提取、判断等常用功能。下面是对它的使用详解,包括常用接口与完整示例。 1. 引入头文件与命名空间 #include <boost/filesystem.hpp> namespace fs b…...
Python的__call__ 方法
在 Python 中,__call__ 是一个特殊的魔术方法(magic method),它允许一个类的实例像函数一样被调用。当你在一个对象后面加上 () 并执行时(例如 obj()),Python 会自动调用该对象的 __call__ 方法…...
更新 Docker 容器中的某一个文件
🔄 如何更新 Docker 容器中的某一个文件 以下是几种在 Docker 中更新单个文件的常用方法,适用于不同场景。 ✅ 方法一:使用 docker cp 拷贝文件到容器中(最简单) 🧰 命令格式: docker cp <…...
VASP软件在第一性原理计算中的应用-测试GO
VASP软件在第一性原理计算中的应用 VASP是由维也纳大学Hafner小组开发的一款功能强大的第一性原理计算软件,广泛应用于材料科学、凝聚态物理、化学和纳米技术等领域。 VASP的核心功能与应用 1. 电子结构计算 VASP最突出的功能是进行高精度的电子结构计算ÿ…...
使用python进行图像处理—图像变换(6)
图像变换是指改变图像的几何形状或空间位置的操作。常见的几何变换包括平移、旋转、缩放、剪切(shear)以及更复杂的仿射变换和透视变换。这些变换在图像配准、图像校正、创建特效等场景中非常有用。 6.1仿射变换(Affine Transformation) 仿射变换是一种…...
