当前位置: 首页 > news >正文

XSSFWorkbook 和 SXSSFWorkbook 的区别

在现代办公环境中,处理 Excel 文件是一个常见的任务。Apache POI 是一个流行的 Java 库,能够读写 Microsoft Office 文档。对于处理 Excel 文件,Apache POI 提供了 XSSFWorkbookSXSSFWorkbook 两个类。本文将详细介绍这两个类的特点和适用场景,帮助开发者在处理不同大小和类型的 Excel 文件时做出合适的选择。

XSSFWorkbook

XSSFWorkbook 是 Apache POI 库中用于处理 .xlsx 文件格式的类。它提供了对 Excel 文件的全面读写功能,支持复杂的格式和公式。XSSFWorkbook 的一个显著特点是它会将整个工作簿加载到内存中,这使得它在处理大型 Excel 文件时可能会导致内存溢出。因此,XSSFWorkbook 适合处理较小的 Excel 文件,或者在内存资源充足的环境中使用。

以下是一个使用 XSSFWorkbook 创建和写入 Excel 文件的示例:

import org.apache.poi.xssf.usermodel.XSSFWorkbook;
import org.apache.poi.ss.usermodel.*;import java.io.FileOutputStream;
import java.io.IOException;public class XSSFWorkbookExample {public static void main(String[] args) throws IOException {// 创建一个新的工作簿XSSFWorkbook workbook = new XSSFWorkbook();// 创建一个新的工作表Sheet sheet = workbook.createSheet("Sheet1");// 创建一行Row row = sheet.createRow(0);// 创建一个单元格并设置其值Cell cell = row.createCell(0);cell.setCellValue("Hello, XSSFWorkbook!");// 将工作簿写入文件try (FileOutputStream fileOut = new FileOutputStream("workbook.xlsx")) {workbook.write(fileOut);}// 关闭工作簿workbook.close();}
}
SXSSFWorkbook

SXSSFWorkbook 是 Apache POI 库中用于处理 .xlsx 文件的流式处理类,专为处理大数据量的场景设计。与 XSSFWorkbook 不同,SXSSFWorkbook 通过使用磁盘缓冲区来减少内存占用,只在内存中保留一定数量的行数据(默认是100行),适合处理大文件。

SXSSFWorkbook 主要用于写入操作,不支持读取现有的 Excel 文件。在流式写入过程中,一旦写入的行被刷新出内存,就无法再访问或修改这些行。因此,SXSSFWorkbook 适合处理大数据量的写入操作,内存占用更少。

以下是一个使用 SXSSFWorkbook 创建和写入 Excel 文件的示例:

import org.apache.poi.xssf.streaming.SXSSFWorkbook;
import org.apache.poi.ss.usermodel.*;import java.io.FileOutputStream;
import java.io.IOException;public class SXSSFWorkbookExample {public static void main(String[] args) throws IOException {// 创建一个新的流式工作簿SXSSFWorkbook workbook = new SXSSFWorkbook();// 创建一个新的工作表Sheet sheet = workbook.createSheet("Sheet1");// 创建多行数据for (int rownum = 0; rownum < 1000; rownum++) {Row row = sheet.createRow(rownum);Cell cell = row.createCell(0);cell.setCellValue("Row " + rownum);}// 将工作簿写入文件try (FileOutputStream fileOut = new FileOutputStream("streaming_workbook.xlsx")) {workbook.write(fileOut);}// 释放磁盘占用的临时文件workbook.dispose();}
}
总结

在选择使用 XSSFWorkbook 还是 SXSSFWorkbook 时,开发者需要根据具体的应用场景进行权衡。如果需要读写较小的 Excel 文件,并且内存资源充足,可以选择 XSSFWorkbook。如果需要处理大数据量的写入操作,并且希望减少内存占用,可以选择 SXSSFWorkbook。通过了解这两个类的特点和适用场景,开发者可以更高效地处理 Excel 文件,提升应用的性能和稳定性。

希望这篇文章能够帮助你在实际开发中更好地使用 Apache POI 处理 Excel 文件。如果你有任何问题或建议,欢迎在评论区留言讨论。

相关文章:

XSSFWorkbook 和 SXSSFWorkbook 的区别

在现代办公环境中&#xff0c;处理 Excel 文件是一个常见的任务。Apache POI 是一个流行的 Java 库&#xff0c;能够读写 Microsoft Office 文档。对于处理 Excel 文件&#xff0c;Apache POI 提供了 XSSFWorkbook 和 SXSSFWorkbook 两个类。本文将详细介绍这两个类的特点和适用…...

会议主题:NICE Seminar|神经组合优化方法的大规模泛化研究(南方科技大学王振坤副研究员)

数据增强 获得更多解 TSP问题 最优解与序列无关&#xff0c;数据增强 ICML 2024 Position Rethinking Post-Hoc Search-Based Neural Approaches for Solving Large-Scale Traveling Salesman Problems...

昇思25天学习打卡营第22天|CycleGAN图像风格迁移互换

相关知识 CycleGAN 循环生成网络&#xff0c;实现了在没有配对示例的情况下将图像从源域X转换到目标域Y的方法&#xff0c;应用于域迁移&#xff0c;也就是图像风格迁移。上章介绍了可以完成图像翻译任务的Pix2Pix&#xff0c;但是Pix2Pix的数据必须是成对的。CycleGAN中只需…...

《Java初阶数据结构》----6.<优先级队列之PriorityQueue底层:堆>

前言 大家好&#xff0c;我目前在学习java。之前也学了一段时间&#xff0c;但是没有发布博客。时间过的真的很快。我会利用好这个暑假&#xff0c;来复习之前学过的内容&#xff0c;并整理好之前写过的博客进行发布。如果博客中有错误或者没有读懂的地方。热烈欢迎大家在评论区…...

Matrix Equation(高斯线性异或消元+bitset优化)

题目&#xff1a; 登录—专业IT笔试面试备考平台_牛客网 思路&#xff1a; 我们发现对于矩阵C可以一列一列求。 mod2&#xff0c;当这一行相乘1的个数为奇数时&#xff0c;z(i,j)为1&#xff0c;偶数为0&#xff0c;是异或消元。 对于b[i&#xff0c;j]*c[i,j],b[i,j]可以…...

【一图学技术】2.API测试9种方法图解

9种API测试方法 冒烟测试&#xff1a;冒烟测试是一种快速的表面级测试&#xff0c;用于验证软件的基本功能是否正常工作&#xff0c;以确定是否值得进行更详细的测试。功能测试&#xff1a;功能测试是验证软件是否符合预期功能要求的测试类型。它涉及对每个功能进行测试&#…...

力扣刷题----42. 接雨水

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 输入&#xff1a;height [0,1,0,2,1,0,1,3,2,1,2,1] 输出&#xff1a;6 解释&#xff1a;上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图&#xf…...

【论文精读】 | 基于图表示的视频抑郁症识别的两阶段时间建模框架

文章目录 0、Description1、Introduction2、Related work2.1 Relationship between depression and facial behaviours2.2 Video-based automatic depression analysis2.3 Facial graph representation 3、The proposed two-stage approach3.1 Short-term depressive behaviour…...

采集PCM,将base64片段转换为wav音频文件

需求 开始录音——监听录音数据——结束录音 在监听录音数据过程中&#xff1a;客户端每100ms给前端传输一次数据&#xff08;pcm数据转成base64&#xff09;&#xff0c;前端需要将base64片段解码、合并、添加WAV头、转成File、上传到 OSS之后将 url 给到服务端处理。 {num…...

eclipse ui bug

eclipse ui bug界面缺陷&#xff0c;可能项目过多&#xff0c;特别maven项目过多&#xff0c;下载&#xff0c;自动编译&#xff0c;加载更新界面异常 所有窗口死活Restore不回去了 1&#xff09;尝试创建项目&#xff0c;还原界面&#xff0c;失败 2&#xff09;关闭所有窗口&…...

前端获取blob文件格式的两种格式

第一种,后台传递给前台是base64格式的JSON数据 这时候前台拿到base64格式的数据可以通过内置的atob解码方法结合new Uint8Array和new Blob方法转换成blob类型的数据格式,然后可以使用blob数据格式进行操作,虽然base64转换成blob要经过很多步骤,但幸运的是这些步骤都是固定的,因…...

向日葵RCE复现(CNVD-2022-10270/CNVD-2022-03672)

一、环境 1.1 网上下载低版本的向日葵<2022 二、开始复现 2.1 在目标主机上打开旧版向日葵 2.2 首先打开nmap扫描向日葵主机端口 2.3 在浏览器中访问ip端口号cgi-bin/rpc?actionverify-haras &#xff08;端口号&#xff1a;每一个都尝试&#xff0c;直到获取到session值…...

Postman中的负载均衡测试:确保API的高可用性

Postman中的负载均衡测试&#xff1a;确保API的高可用性 在微服务架构和分布式系统中&#xff0c;API的负载均衡是确保系统高可用性和可扩展性的关键技术之一。Postman作为一个多功能的API开发和测试平台&#xff0c;提供了多种工具来帮助测试人员模拟高负载情况下的API表现。…...

anaconda+tensorflow+keras+jupyter notebook搭建过程(CPU版)

AnacondaTensorFlowKeras 环境搭建教程...

LitCTF2024赛后web复现

复现要求&#xff1a;看wp做一遍&#xff0c;自己做一遍&#xff0c;第二天再做一遍。&#xff08;一眼看出来就跳过&#xff09; 目录 [LitCTF 2024]浏览器也能套娃&#xff1f; [LitCTF 2024]一个....池子&#xff1f; [LitCTF 2024]高亮主题(划掉)背景查看器 [LitCTF 2…...

Elasticsearch:跨集群使用 ES|QL

警告&#xff1a;ES|QL 的跨集群搜索目前处于技术预览阶段&#xff0c;可能会在未来版本中更改或删除。Elastic 将努力解决任何问题&#xff0c;但技术预览中的功能不受官方 GA 功能的支持 SLA 约束。 使用 ES|QL&#xff0c;你可以跨多个集群执行单个查询。 前提&#xff1a; …...

学习笔记4:docker和k8s选择简述

docker和 k8s 占用资源 使用客户体量Docker 和 Kubernetes&#xff08;K8s&#xff09;都是流行的容器化技术&#xff0c;但它们在资源管理和使用上有一些不同。以下是关于两者资源占用和使用客户体量的详细比较&#xff0c;基于具体数据和信息&#xff1a; Docker 资源占用…...

关于锁策略

在Java中对于多线程来说&#xff0c;锁是一种重要且必不可少的东西&#xff0c;那么我们将如何使用以及在什么时候使用什么样的锁呢&#xff1f;请各位往下看 悲观锁VS乐观锁 悲观锁&#xff1a; 在多线程环境中&#xff0c;冲突是非常常见的&#xff0c;所以在执行操作之前…...

昇思25天学习打卡营第3天|基础知识-数据集Dataset

目录 环境 环境 导包 数据集加载 数据集迭代 数据集常用操作 shuffle map batch 自定义数据集 可随机访问数据集 可迭代数据集 生成器 MindSpore提供基于Pipeline的数据引擎&#xff0c;通过数据集&#xff08;Dataset&#xff09;和数据变换&#xff08;Transfor…...

C++11新特性——智能指针——参考bibi《 原子之音》的视频以及ChatGpt

智能指针 一、内存泄露1.1 内存泄露常见原因1.2 如何避免内存泄露 二、实例Demo2.1 文件结构2.2 Dog.h2.3 Dog.cpp2.3 mian.cpp 三、独占式智能指针:unique _ptr3.1 创建方式3.1.1 ⭐从原始(裸)指针转换&#xff1a;3.1.2 ⭐⭐使用 new 关键字直接创建&#xff1a;3.1.3 ⭐⭐⭐…...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式&#xff0c;然后找到相应的网卡&#xff08;可以查看自己本机的网络连接&#xff09; windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置&#xff0c;选择刚才配置的桥接模式 静态ip设置&#xff1a; 我用的ubuntu24桌…...

Neko虚拟浏览器远程协作方案:Docker+内网穿透技术部署实践

前言&#xff1a;本文将向开发者介绍一款创新性协作工具——Neko虚拟浏览器。在数字化协作场景中&#xff0c;跨地域的团队常需面对实时共享屏幕、协同编辑文档等需求。通过本指南&#xff0c;你将掌握在Ubuntu系统中使用容器化技术部署该工具的具体方案&#xff0c;并结合内网…...

文件上传漏洞防御全攻略

要全面防范文件上传漏洞&#xff0c;需构建多层防御体系&#xff0c;结合技术验证、存储隔离与权限控制&#xff1a; &#x1f512; 一、基础防护层 前端校验&#xff08;仅辅助&#xff09; 通过JavaScript限制文件后缀名&#xff08;白名单&#xff09;和大小&#xff0c;提…...

Linux入门(十五)安装java安装tomcat安装dotnet安装mysql

安装java yum install java-17-openjdk-devel查找安装地址 update-alternatives --config java设置环境变量 vi /etc/profile #在文档后面追加 JAVA_HOME"通过查找安装地址命令显示的路径" #注意一定要加$PATH不然路径就只剩下新加的路径了&#xff0c;系统很多命…...

STL 2迭代器

文章目录 1.迭代器2.输入迭代器3.输出迭代器1.插入迭代器 4.前向迭代器5.双向迭代器6.随机访问迭代器7.不同容器返回的迭代器类型1.输入 / 输出迭代器2.前向迭代器3.双向迭代器4.随机访问迭代器5.特殊迭代器适配器6.为什么 unordered_set 只提供前向迭代器&#xff1f; 1.迭代器…...