当前位置: 首页 > news >正文

【DP】01背包

算法-01背包


前置知识

  • DP

思路

01背包一般分为两种,不妨叫做价值01背包和判断01背包。

价值01背包

01背包问题是这样的一类问题:给定一个背包的容量 m m m n n n 个物品,每个物品有重量 w w w 和价值 v v v,求不超过背包容量时可以装下的最大价值。
对于这类问题,我们使用DP,设 f i , j f_{i,j} fi,j 为考虑前 i i i 个物品时总重恰好为 j j j 的最大价值和。
容易得到DP方程: f i , j = max ⁡ ( f i − 1 , j , f i − 1 , j − w + v ) f_{i,j}=\max(f_{i-1,j},f_{i-1,j-w}+v) fi,j=max(fi1,j,fi1,jw+v)

判断01背包

思路类似,方程变为 f i , j = f i − 1 , j ∣ f i − 1 , j − w + v f_{i,j}=f_{i-1,j}\mid f_{i-1,j-w}+v fi,j=fi1,jfi1,jw+v 即可


算法参数

  • 时间复杂度: Θ ( n m ) \Theta(nm) Θ(nm)
  • 空间复杂度: Θ ( n m ) \Theta(nm) Θ(nm)

滚动优化

滚动优化是动态规划中最常见的空间优化了。
容易发现在动态转移方程中有 f i , j = max ⁡ ( f i − 1 , j , f i − 1 , j − w + v ) f_{i,j}=\max(f_{i-1,j},f_{i-1,j-w}+v) fi,j=max(fi1,j,fi1,jw+v)
注意到第一维仅仅继承上一轮循环的状态,可以把这一维删掉。
我们注意到每次从前往后枚举 j j j,前面的状态已经被更新了,于是不妨倒过来循环,此时前面的数据还是上一次的结果,拿过来用即可。


算法参数

  • 时间复杂度: Θ ( n m ) \Theta(nm) Θ(nm)
  • 空间复杂度: Θ ( n + m ) \Theta(n+m) Θ(n+m)

实现代码

  • 价值
f[0]=0;
for (int i=1;i<=n;i++)for (int j=m;j>=w[i];j--)f[j]=max(f[j],f[j-w[i]]+v[i]);
  • 判断
f[0]=1;
for (int i=1;i<=n;i++)for (int j=m;j>=w[i];j--)f[j]=f[j]|f[j-w[i]];

练习

  • P1048
  • P1049
  • P1734

相关文章:

【DP】01背包

算法-01背包 前置知识 DP 思路 01背包一般分为两种&#xff0c;不妨叫做价值01背包和判断01背包。 价值01背包 01背包问题是这样的一类问题&#xff1a;给定一个背包的容量 m m m 和 n n n 个物品&#xff0c;每个物品有重量 w w w 和价值 v v v&#xff0c;求不超过背…...

50、PHP 实现选择排序

题目&#xff1a; PHP 实现选择排序 描述&#xff1a; n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果&#xff1a;(1)初始状态&#xff1a;无序区为R[1…n]&#xff0c;有序区为空。(2)第1趟排序在无序区R[1…n]中选出关键字最小的记录R[k]&#xff0c;将…...

17.延迟队列

介绍 延迟队列&#xff0c;队列内部是有序的&#xff0c;延迟队列中的元素是希望在指定时间到了以后或之前取出和处理。 死信队列中&#xff0c;消息TTL过期的情况其实就是延迟队列。 使用场景 1.订单在十分钟内未支付则自动取消。 2.新创建的店铺&#xff0c;如果十天内没…...

KCache-go本地缓存,支持本地缓存过期、缓存过期自维护机制。

GitHub - kocor01/kcache: go 本地缓存解决方案&#xff0c;支持本地缓存过期、缓存过期自维护机制。 最近系统并发很高&#xff0c;单接口10W的 QPS&#xff0c;对 redis 压力很大&#xff0c;大量的热KEY导致 redis 分片CPU资源经常告警。计划用 go 本地缓存缓解 redis 的压…...

斯坦福UE4 C++课学习补充 14:UMG-优化血量条

文章目录 一、优化执行效率二、简单脉冲动画 一、优化执行效率 绑定事件需要每一帧检查绑定对象是否有变化&#xff0c;势必造成CPU资源的浪费&#xff0c;因此优化执行效率的思路是&#xff1a;UI组件不再自行每帧查询血量&#xff0c;而是让血量自己在发生变化的同时通知UI进…...

在生信分析中大家需要特别注意的事情​

在生信分析中大家需要特别注意的事情 标准的软件使用和数据分析流程 1. 先看我的b站教学视频 2. 先从我的百度网盘把演示数据集下载下来&#xff0c;先把要运行的模块的演示数据集先运行一遍 3. 前两步都做完了&#xff0c;演示数据集也运行成功了&#xff0c;并且知道了软件…...

Java工厂模式详解:方法工厂模式与抽象工厂模式

Java工厂模式详解&#xff1a;方法工厂模式与抽象工厂模式 一、引言 在Java开发中&#xff0c;设计模式是解决常见软件设计问题的一种有效方式。工厂模式作为创建型设计模式的一种&#xff0c;提供了灵活的对象创建机制&#xff0c;有助于降低代码的耦合度&#xff0c;提高系…...

springSecurity学习之springSecurity用户单设备登录

用户只能单设备登录 有时候在同一个系统中&#xff0c;只允许一个用户在一个设备登录。 之前的登陆者被顶掉 将最大会话数设置为1就可以保证用户只能同时在一个设备上登录 Override protected void configure(HttpSecurity http) throws Exception {http..anyRequest().aut…...

微信小程序实现聊天界面,发送功能

.wxml <scroll-view scroll-y"true" style"height: {{windowHeight}}px;"><view wx:for"{{chatList}}" wx:for-index"index" wx:for-item"item" style"padding-top:{{index0?30:0}}rpx"><!-- 左…...

【强化学习的数学原理】课程笔记--5(值函数近似,策略梯度方法)

目录 值函数近似一个例子TD 算法的值函数近似形式Sarsa, Q-learning 的值函数近似形式Deep Q-learningexperience replay 策略梯度方法&#xff08;Policy Gradient&#xff09;Policy Gradient 的目标函数目标函数 1目标函数 2两种目标函数的同一性 Policy Gradient 目标函数的…...

前端Long类型精度丢失:后端处理策略

文章目录 精度丢失的具体原因解决方法1. 使用 JsonSerialize 和 ToStringSerializer2. 使用 JsonFormat 注解3. 全局配置解决方案 结论 开发商城管理系统的品牌管理界面时&#xff0c;发现一个问题&#xff0c;接口返回品牌Id和页面展示的品牌Id不一致&#xff0c;如接口返回的…...

C++ | Leetcode C++题解之第300题最长递增子序列

题目&#xff1a; 题解&#xff1a; class Solution { public:int lengthOfLIS(vector<int>& nums) {int len 1, n (int)nums.size();if (n 0) {return 0;}vector<int> d(n 1, 0);d[len] nums[0];for (int i 1; i < n; i) {if (nums[i] > d[len])…...

springboo 整合 redis

springBoot 整合 redis starter启动依赖。—包含自动装配类—完成相应的装配功能。 引入依赖 <!--引入了redis整合springboot 的依赖--> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis&…...

dpdk编译安装以及接收udp报文(基于ubuntu)

目录 1、编译 2、设置运行环境 3、使用dpdk接收udp报文 3.1、设置发送端arp信息 3.2、测试 3.3、代码 4、其他 1、编译 代码下载&#xff1a; DPDK 下载版本&#xff1a;DPDK 19.08.2 export RTE_SDK/root/dpdk-stable-19.08.2/ export RTE_TARGETx86_64-native-li…...

【计算机网络】OSPF单区域实验

一&#xff1a;实验目的 1&#xff1a;掌握在路由器上配置OSPF单区域。 2&#xff1a;学习OSPF协议的原理&#xff0c;及其网络拓扑结构改变后的变化。 二&#xff1a;实验仪器设备及软件 硬件&#xff1a;RCMS交换机、网线、内网网卡接口、Windows 2019操作系统的计算机等。…...

Java聚合快递小程序对接云洋系统程序app源码

​一场物流效率的革命 引言&#xff1a;物流新时代的序章 在数字化浪潮席卷各行各业的今天&#xff0c;物流行业也迎来了前所未有的变革。为了进一步提升物流效率&#xff0c;优化用户体验&#xff0c;聚合快递系统与云洋系统小程序的对接成为了行业内外关注的焦点。这一创新…...

【React】详解组件通信:从基础到进阶的全面指南

文章目录 一、父组件向子组件传递数据1. 基本概念2. 示例代码3. 详解定义子组件 Son定义父组件 App导出父组件 App数据流props 的内容 二、子组件向父组件传递数据1. 基本概念2. 示例代码3. 详解引入React库和useState钩子定义子组件 Son定义父组件 App导出父组件 App数据流 三…...

【vluhub】zabbix漏洞

介绍&#xff1a; zabbix是对服务器资源状态例如、内存空间、CPU、程序运行状态进行检测、设置预警值、短信设置等功能等一款开源工具。配置不当存在未授权,SQL注入漏洞 弱口令 nameadmin&passwordzabbix nameguest&password POST /index.php HTTP/1.1 Host: 192.1…...

openGauss触发器详解

openGauss 是一款开源关系型数据库管理系统&#xff0c;广泛应用于企业级应用中。随着数据量的增长和业务逻辑的复杂化&#xff0c;数据库管理和操作的自动化需求越来越高。触发器&#xff08;Triggers&#xff09;作为数据库中重要的编程工具&#xff0c;能够极大地简化复杂操…...

抄作业-跟着《React通关秘籍》捣鼓React-playground-上集

文章目录 前言1. 搭建react 开发环境2、react hooks 知识3. 目标&#xff1a;跟着小册实现 react-playground3.1 整体布局初始化项目使用Alloment 来实现左右分屏的拖拉功能 3.2 代码编辑器Monaco Editor 3.3 实现了多文件的切换用 useContext 来共享数据。优化 tab的样式&…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…...