当前位置: 首页 > news >正文

K210视觉识别模块学习笔记7:多线程多模型编程识别

今日开始学习K210视觉识别模块: 图形化操作函数

亚博智能      K210视觉识别模块......  

固件库:        canmv_yahboom_v2.1.1.bin

训练网站:    嘉楠开发者社区

今日学习使用多线程、多模型来识别各种物体

 这里先提前说一下本文这次测试实验的结果吧:
结果是不太成功的,没法同时调用俩个模型进行识别,但单独一条线程还是比较正常的

其次就是有一些不足之处,就是训练集太少了,平均每个物体就30多张图片...

以后如果想识别效果好一点,图片数量要多,使用210拍摄,多角度,多光照条件等

文章提供测试代码讲解、完整代码贴出、测试效果图、完整工程下载

目录

简单的多线程程序:

程序代码:

测试结果:

双线程识别尝试:

修改模型名称示例:

别忘了更改模型名称复制到TF卡:​编辑复制整合代码进线程函数:

测试结果声明:

不注释任何线程: 

 注释掉APPLE的线程:​编辑

网上学习资料贴出:


简单的多线程程序:

之前学习树莓派python编程就接触过多线程编程,这里就不多讲定义函数什么的了,直接贴出文章地址:

树莓派4B学习笔记14:Python多线程编程_线程间的同步通信_(锁‘threading.Lock’)_树莓派4b是否支持多线程-CSDN博客

这部分就简单演示一下简单的双线程 是怎么编程的

程序代码:


import _thread #导入线程模块头文件
import time#定义打印测试 线程函数
def print_test(name):while True:print("hello {}".format(name))time.sleep(1)_thread.start_new_thread(print_test,("1",)) #开启线程1,参数必须是元组
_thread.start_new_thread(print_test,("2",)) #开启线程2,参数必须是元组while True:print_test(3)pass

测试结果:

发现这个定义了双线程的程序其实有三条线程:多出来的是主线程

主线程先运行,然后运行其余线程,这个运行顺序可以变换!

双线程识别尝试:

今天尝试采集训练数据集,然后编程,并同时识别苹果与数字6
数据集-模型-代码都会在文末打包提供下载~~~

注意苹果与数字6的 Kmodul 模型不是同一个,而是俩个分开训练出的模型,分别给俩个线程调用


修改模型名称示例:

之前的文章讲过如何修改部分代码使其适配运行,但这里我们发现它每个训练出的模型貌似都是名称为det.kmodel,因此我要将其作小小修改,将名称变为别的

以识别数字6的模型为例,我将它的模型名称该为了:det_6.kmodel

因此程序中,在加载模型的那一行,也需要进行多一步的改写:

其余的更改在之前的文章中早就提到了,跟着更改就行:

K210视觉识别模块学习笔记5:(嘉楠)训练使用模型_识别人脸_亚博k210-CSDN博客

最后进行上位机测试无误即可:
这里别忘了先把模型文件拖入SD卡~,因为是上位机IDE测试,所以代码文件不需要拖入,改好的代码复制或者在CAN_MV的IDE上打开就好了



测试识别结果图:
感觉识别效果很不稳定,应该是数据集太少的原因``````

对于APPLE识别苹果的模型是同理的.....也先这样修改好在进行单独测试失败无问题即可!


别忘了更改模型名称复制到TF卡:


复制整合代码进线程函数:

这一步就注意一下模型名称都要对应好你修改的名称即可!

import _thread #导入线程模块头文件
import time
import sensor, image, time, lcd, gc, cmath
from maix import KPUlcd.init()                          # Init lcd display
lcd.clear(lcd.RED)                  # Clear lcd screen.# sensor.reset(dual_buff=True)      # improve fps
sensor.reset()                      # Reset and initialize the sensor.
sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA)   # Set frame size to QVGA (320x240)
#sensor.set_vflip(True)              # 翻转摄像头
#sensor.set_hmirror(True)            # 镜像摄像头
sensor.skip_frames(time = 1000)     # Wait for settings take effect.
clock = time.clock()                # Create a clock object to track the FPS.#定义APPLE识别线程函数
def APPLE_detect(name):labels = ["APPLE"] #类名称,按照label.txt顺序填写anchor = (2.59, 2.47, 2.84, 3.03, 3.56, 3.44, 3.77, 3.87, 5.31, 4.94) # anchors,使用anchor.txt中第二行的值kpu = KPU()# 从sd或flash加载模型kpu.load_kmodel('/sd/det_APPLE.kmodel')#kpu.load_kmodel(0x300000, 584744)kpu.init_yolo2(anchor, anchor_num=(int)(len(anchor)/2), img_w=320, img_h=240, net_w=320 , net_h=240 ,layer_w=10 ,layer_h=8, threshold=0.6, nms_value=0.3, classes=len(labels))while True:        gc.collect()clock.tick()img = sensor.snapshot()kpu.run_with_output(img)dect = kpu.regionlayer_yolo2()fps = clock.fps()if len(dect) > 0:for l in dect :a = img.draw_rectangle(l[0],l[1],l[2],l[3],color=(0,255,0))info = "%s %.3f" % (labels[l[4]], l[5])a = img.draw_string(l[0],l[1],info,color=(255,0,0),scale=2.0)print(info)del infoa = img.draw_string(0, 0, "%2.1ffps" %(fps),color=(0,60,255),scale=2.0)lcd.display(img)#定义SIX识别线程函数
def SIX_detect(name):   labels = ["six"] #类名称,按照label.txt顺序填写anchor = (1.06, 1.22, 1.36, 1.56, 1.75, 2.03, 2.41, 2.88, 3.58, 4.45) # anchors,使用anchor.txt中第二行的值kpu = KPU()# 从sd或flash加载模型kpu.load_kmodel('/sd/det_6.kmodel')#kpu.load_kmodel(0x300000, 584744)kpu.init_yolo2(anchor, anchor_num=(int)(len(anchor)/2), img_w=320, img_h=240, net_w=320 , net_h=240 ,layer_w=10 ,layer_h=8, threshold=0.6, nms_value=0.3, classes=len(labels))while(True):gc.collect()clock.tick()img = sensor.snapshot()kpu.run_with_output(img)dect = kpu.regionlayer_yolo2()fps = clock.fps()if len(dect) > 0:for l in dect :a = img.draw_rectangle(l[0],l[1],l[2],l[3],color=(0,255,0))info = "%s %.3f" % (labels[l[4]], l[5])a = img.draw_string(l[0],l[1],info,color=(255,0,0),scale=2.0)print(info)del infoa = img.draw_string(0, 0, "%2.1ffps" %(fps),color=(0,60,255),scale=2.0)lcd.display(img)_thread.start_new_thread(APPLE_detect,("1",)) #开启线程1,参数必须是元组    
_thread.start_new_thread(SIX_detect,("1",)) #开启线程2,参数必须是元组     while True:pass 



测试结果声明:

感觉K210的处理运算能力还是有限的:
当我不注释任何线程时,只有APPLE的检测比较正常,
当我把APPLE检测的线程注释掉时,SIX数字又能比较正常地识别到了~~~

其次我的数据集图片数量确实太少了,平均才30多张,识别精度受影响.....

不注释任何线程: 


 

 注释掉APPLE的线程:

 

完整工程下载地址:

https://download.csdn.net/download/qq_64257614/89574163

 
 

网上学习资料贴出:

K210——thread(线程)_k210多线程是什么-CSDN博客

 

相关文章:

K210视觉识别模块学习笔记7:多线程多模型编程识别

今日开始学习K210视觉识别模块: 图形化操作函数 亚博智能 K210视觉识别模块...... 固件库: canmv_yahboom_v2.1.1.bin 训练网站: 嘉楠开发者社区 今日学习使用多线程、多模型来识别各种物体 这里先提前说一下本文这次测试实验的结果吧:结果是不太成…...

Go语言教程(一看就会)

全篇文章 7000 字左右, 建议阅读时长 1h 以上。 Go语言是一门开源的编程语言,目的在于降低构建简单、可靠、高效软件的门槛。Go平衡了底层系统语言的能力,以及在现代语言中所见到的高级特性。它是快速的、静态类型编译语言。 第一个GO程序…...

【Golang 面试 - 基础题】每日 5 题(十)

✍个人博客:Pandaconda-CSDN博客 📣专栏地址:http://t.csdnimg.cn/UWz06 📚专栏简介:在这个专栏中,我将会分享 Golang 面试中常见的面试题给大家~ ❤️如果有收获的话,欢迎点赞👍收藏…...

OD C卷 - 密码输入检测

密码输入检测 &#xff08;100&#xff09; 给定一个密码&#xff0c;‘<’ 表示删除前一个字符&#xff0c;输出最终得到的密码&#xff0c;并判断是否满足密码安全要求&#xff1a; 密码长度>8;至少包含一个大写字母&#xff1b;至少包含一个小写字母&#xff1b;至少…...

【每日一题】【逆推法 + 贪心】【数学】造数 河南萌新联赛2024第(一)场:河南农业大学 A题 C++

河南萌新联赛2024第&#xff08;一&#xff09;场&#xff1a;河南农业大学 A题 造数 题目描述 样例 #1 样例输入 #1 2样例输出 #1 1样例 #2 样例输入 #2 5样例输出 #2 3做题思路 本题可以用逆推法 将三种操作反过来变为 − 1 , − 2 , / 2 -1 , -2 , /2 −1,−2,/2 …...

刷题计划 day4 【双指针、快慢指针、环形链表】链表下

⚡刷题计划day4继续&#xff0c;可以点个免费的赞哦~ 下一期将会开启哈希表刷题专题&#xff0c;往期可看专栏&#xff0c;关注不迷路&#xff0c; 您的支持是我的最大动力&#x1f339;~ 目录 ⚡刷题计划day4继续&#xff0c;可以点个免费的赞哦~ 下一期将会开启哈希表刷题…...

最高200万!苏州成都杭州的这些AI政策补贴,你拿到了吗?

随着全球人工智能技术的迅猛发展&#xff0c;地方政府纷纷出台相关政策以抢占未来科技的制高点。苏州 成都 杭州这三个城市更是推出了一系列AI政策补贴&#xff0c;旨在通过多方面支持&#xff0c;推动本地AI产业的发展。本文将带你了解目前不完全统计到的苏州 成都 杭州三地AI…...

使用两台虚拟机分别部署前端和后端项目

使用两台虚拟机分别部署前端和后端项目 1 部署方案2 准备两台虚拟机&#xff0c;并配置网络环境3 部署后端项目3.1 打包服务3.2 上传jar包到服务器3.3 集成Systemd3.3.1 移动端服务集成Systemd3.3.2 后台管理系统集成Systemd 4 配置域名映射5 部署前端项目5.1 移动端5.1.1 打包…...

Halcon学习之derivate_gauss

HALCON 图像处理库中的一个常用算子&#xff0c;用于计算图像的高斯导数。高斯导数是一种平滑导数&#xff0c;在计算过程中结合了高斯滤波&#xff0c;具有平滑噪声的效果。这个算子可以计算图像的不同导数&#xff0c;如梯度、一阶导数、二阶导数、以及 Hessian 行列式等。 …...

智能优化算法(三):遗传算法

文章目录 1.问题描述2.遗传算法2.1.算法概述2.2.编码操作2.3.选择操作2.4.交叉操作2.5.变异操作2.6.算法流程 3.算法实现3.1.MATLAB代码实现3.2.Python代码实现 4.参考文献 1.问题描述 \quad 在利用启发式算法求解问题时&#xff0c;我们常常需要应用遗传算法解决函数最值问题&…...

Docker部署nacos...用户名密码错误

前提 镜像选择v2.3.0版本&#xff0c;因为最新的没拉下来用的别的地方save load的镜像。 官方示例 官方文档 数据库脚本&#xff0c;直接去数据库新建数据库nacos吧&#xff0c;执行脚本&#xff0c;执行完成后&#xff0c;发现只有建表语句&#xff0c;查询得知&#xff0c…...

搭建Vue开发环境

一、下载Vue.js 进入官网教程安装 — Vue.js (vuejs.org) 下载开发版本到本地 二、安装 Vue Devtools 安装完成后...

富格林:防范虚假可信投资经验

富格林指出&#xff0c;现货黄金投资作为一种全球性的金融衍生品交易&#xff0c;吸引了无数投资者的目光。它不仅具备避险属性&#xff0c;还是资产配置中不可或缺的一部分。然而&#xff0c;要想在市场中防范虚假陷阱&#xff0c;投资者必须要掌握并且利用可信的投资经验。下…...

Intent的数据传递

在Android开发中&#xff0c;使用Intent在Activity之间传递数据是一种常见的方式。然而&#xff0c;Intent确实有一些大小和类型的限制。 Intent的限制 数据大小限制&#xff1a;虽然官方没有明确说明Intent的数据大小限制&#xff0c;但是Intent是通过Binder机制进行IPC&…...

【NPU 系列专栏 3.1 -- - ARM NPU 有哪些型号?】

请阅读【嵌入式及芯片开发学必备专栏】 文章目录 ARM X 系列和 Z 系列 NPU 详解ARM X 系列 NPUARM X 系列 NPU型号和算力ARM X 系列 NPU 应用场景ARM Z 系列 NPU 简介ARM Z 系列 NPU 型号和算力ARM Z 系列 NPU 应用场景SummaryARM X 系列和 Z 系列 NPU 详解 ARM 的 NPU(Neura…...

如何运行别人的vue项目

文章目录 如何运行别人的vue项目一、删除现有的node_modules二、npm换源三、清理缓存四、进行依赖安装五、运行服务器 如何运行别人的vue项目 一、删除现有的node_modules 二、npm换源 换成淘宝的镜像源 查看当前镜像源 npm config get registry更换淘宝镜像源 npm confi…...

【Django5】内置Admin系统

系列文章目录 第一章 Django使用的基础知识 第二章 setting.py文件的配置 第三章 路由的定义与使用 第四章 视图的定义与使用 第五章 二进制文件下载响应 第六章 Http请求&HttpRequest请求类 第七章 会话管理&#xff08;Cookies&Session&#xff09; 第八章 文件上传…...

汕头 西月 公司的面试

1&#xff1b;常用的框架&#xff0c;tp 他的特性 2&#xff1a;事务&#xff0c;的使用的场景。 3&#xff1a;redis 的使用的场景 。 4&#xff1a;redis 集合使用的场景...

Spring Boot 实现不同项目之间的远程

Spring Boot 实现不同项目之间的远程调用 在分布式系统中&#xff0c;通常需要多个微服务之间进行通信。在 Spring Boot 中&#xff0c;实现远程调用的方式有很多&#xff0c;常见的方法包括使用 REST API、gRPC、以及 Spring Cloud Feign 等。本篇博客将详细介绍如何在不同的…...

【VS2019安装+QT配置】

【VS2019安装QT配置】 1. 前言2. 下载visual studio20193. visual studio2019安装4. 环境配置4.1 系统环境变量配置4.2 qt插件开发 5. Visual Studio导入QT项目6. 总结 1. 前言 前期安装了qt&#xff0c;发现creator编辑器并不好用&#xff0c;一点都不时髦。在李大师的指导下&…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...