当前位置: 首页 > news >正文

数学建模(5)——逻辑回归

一、二分类

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix# 加载数据集
iris = datasets.load_iris()
X = iris.data[:, :2]  # 只使用前两个特征
y = (iris.target != 0) * 1  # 将标签转换为二分类问题# 数据标准化
scaler = StandardScaler()
X = scaler.fit_transform(X)# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 训练逻辑回归模型
clf = LogisticRegression()
clf.fit(X_train, y_train)# 预测
y_pred = clf.predict(X_test)# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy}")# 分类报告
print("Classification Report:")
print(classification_report(y_test, y_pred))# 混淆矩阵
print("Confusion Matrix:")
print(confusion_matrix(y_test, y_pred))# 绘制决策边界
def plot_decision_boundary(clf, X, y):x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01),np.arange(y_min, y_max, 0.01))Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])Z = Z.reshape(xx.shape)plt.contourf(xx, yy, Z, alpha=0.8)plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k', marker='o')plt.xlabel('Feature 1')plt.ylabel('Feature 2')plt.title('Logistic Regression Decision Boundary')plt.show()plot_decision_boundary(clf, X, y)

二、算法介绍

        逻辑回归是一种二分类算法,它只能处理两个类别

        标准化的目的是将特征数据调整到一个标准的范围内(通常是均值为0,标准差为1),从而消除不同特征之间的量纲差异。这对于许多机器学习算法来说都非常重要,尤其是使用梯度下降的算法,如逻辑回归、神经网络等。标准化可以加快收敛速度并提高模型性能。

相关文章:

数学建模(5)——逻辑回归

一、二分类 import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklea…...

【C++高阶】:深入探索C++11

✨ 心似白云常自在,意如流水任东西 🌏 📃个人主页:island1314 🔥个人专栏:C学习 🚀 欢迎关注:👍点赞 &#x1f4…...

6. 自定义Docker镜像

如何自定义Docker镜像:从基础到实践 Docker作为一个容器化平台,使得应用的打包、分发和运行变得更加高效和便捷。本文将详细介绍如何自定义一个Docker镜像,包括镜像的构成、分层原理、创建自定义镜像的具体步骤,并演示如何打包和…...

「12月·长沙」人工智能与网络安全国际学术会议(ISAICS 2024)

人工智能与网络安全国际学术会议(ISAICS 2024)将于2024年12月20日-2024年12月22日在湖南长沙召开。会议中发表的文章将会被收录,并于见刊后提交EI核心索引。会议旨在在为国内与国际学者搭建交流平台,推进不同学科领域的融合发展,就当今人工智能与网络安全范畴内各学…...

【技术支持案例】使用S32K144+NSD8381驱动电子膨胀阀

文章目录 1. 前言2. 问题描述3. 理论分析3.1 NSD8381如何连接电机3.2 S32K144和NSD8381的软件配置 4.测试验证4.1 测试环境4.2 测试效果4.3 测试记录 1. 前言 最近有客户在使用S32K144NSD8381驱动电子膨胀阀时,遇到无法正常驱动电子膨胀阀的情况。因为笔者也是刚开…...

第二期:集成电路(IC)——智能世界的微观建筑大师

嘿,小伙伴们!👋 我是你们的老朋友小竹笋,一名热爱创作和技术的工程师。上一期我们聊了聊AI芯片,这次我们要深入到更微观的层面,来探究集成电路(IC)的世界。准备好一起探索了吗&#…...

基于物联网的区块链算力网络,IGP/BGP协议

目录 基于物联网的区块链算力网络 IGP/BGP协议 IGP(内部网关协议) BGP(边界网关协议) 内部使用ISP的外部使用BGP的原因 一、网络规模和复杂性 二、路由协议的特性 三、满足业务需求 四、结论 基于物联网的区块链算力网络 通 过 多个物联网传感器将本地计算…...

每日一题~960 div2 A+B+C(简单奇偶博弈,构造,观察性质算贡献)

A题意: N 长的数组。 一次操作: 最开始的mx 为零。 选出一个数(使得这个数>mx) ,之后将mx 更新为这个数,将这个数置为零。 不能做这个操作的,输。 问是否有先手赢的策略。有的话,输出yes 否则no 当时一…...

音视频入门基础:H.264专题(17)——FFmpeg源码获取H.264裸流文件信息(视频压缩编码格式、色彩格式、视频分辨率、帧率)的总流程

音视频入门基础:H.264专题系列文章: 音视频入门基础:H.264专题(1)——H.264官方文档下载 音视频入门基础:H.264专题(2)——使用FFmpeg命令生成H.264裸流文件 音视频入门基础&…...

Aboboo一些操作

常用快捷键⌨ 快捷键/操作方式 功能 鼠标中键/Esc 进入/退出全屏 空格/Tab 暂停/恢复播放 左/右箭头 快退/快进 Ctrl-左/右箭头 30秒快退/快进 Alt-左/右箭头 60秒快退/快进 Ctrl-Alt-左/右箭头 播放速率调节 PageUp/PageDown 上一句/下一句 上下箭头/滚轮 …...

获取行号LineNumberReader

(每日持续更新)jdk api之LineNumberReader基础、应用、实战-CSDN博客...

python数据结构与算法

0.时间复杂度和空间复杂度 快速判断算法时间复杂度:算法运行时间 1.确定问题规模n 2.循环减半 logn 3.k层关于n的循环 n^k 空间复杂度:评估算法内存占用大小 使用几个变量 O(1) 使用长度为n的一维列表 O(n&#xff09…...

大数据学习之Flink基础(补充)

Flink基础 1、系统时间与事件时间 系统时间(处理时间) 在Sparksreaming的任务计算时,使用的是系统时间。 假设所用窗口为滚动窗口,大小为5分钟。那么每五分钟,都会对接收的数据进行提交任务. 但是,这里有…...

C++基础语法:友元

前言 "打牢基础,万事不愁" .C的基础语法的学习."学以致用,边学边用",编程是实践性很强的技术,在运用中理解,总结. 以<C Prime Plus> 6th Edition(以下称"本书")的内容开展学习 引入 友元提供了一种特别的方式,访问对象私有数据. 友元有三…...

【大模型系列】Video-LaVIT(2024.06)

Paper&#xff1a;https://arxiv.org/abs/2402.03161Github&#xff1a;https://video-lavit.github.io/Title&#xff1a;Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional TokenizationAuthor&#xff1a;Yang Jin&#xff0c; 北大&#x…...

【总结】nacos作为注册中心-应用启动失败:NacosDiscoveryProperties{serverAddr=‘127.0.0.1:8848‘……

问题现象 启动springboot应用时报错&#xff0c;能够读取到nacos配置&#xff0c;但是使用nacos作为注册中心&#xff0c;应用注册到nacos失败。 应用配置bootstrap.properties如下&#xff1a; # 应用编码&#xff0c;安装时替换变量 spring.application.namedata-center #…...

C语言——数组和排序

C语言——数组和排序 数组数组的概念数组的初始化数组的特点 排序选择排序冒泡排序插入排序 二分查找 数组 数组的概念 数组是一组数据 &#xff1b; 数组是一组相同类型的数据或变量的集合 &#xff1b; 应用场景&#xff1a; 用于批量的处理多个数据 &#xff1b; 语法&…...

QEMU 新增QMPHMP指令【原文阅读】

文章目录 0x0 QEMU原文0x10x11 How to write monitor commands0x12 Overview0x13 Testing 0x20x21 Writing a simple command: hello-world0x22 Arguments 0x30x31 Implementing the HMP command 0x40x41 Writing more complex commands0x42 Modelling data in QAPI0x43 User D…...

【Linux】全志Tina配置屏幕时钟的方法

一、文件位置 V:\f1c100s\Evenurs\f1c100s\tina\device\config\chips\c200s\configs\F1C200s\sys_config.fex 二、文件内容 三、介绍 在此处可以修改屏幕的频率&#xff0c;当前为21MHz。 四、总结 注意选择对应的屏幕的参数&#xff0c;sdk所支持的屏幕信息都在此文件夹中…...

探索WebKit的CSS表格布局:打造灵活的网页数据展示

探索WebKit的CSS表格布局&#xff1a;打造灵活的网页数据展示 CSS表格布局是一种在网页上展示数据的强大方式&#xff0c;它允许开发者使用CSS来创建类似于传统HTML表格的布局。WebKit作为许多流行浏览器的渲染引擎&#xff0c;提供了对CSS表格布局的全面支持。本文将深入探讨…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

PHP 8.5 即将发布:管道操作符、强力调试

前不久&#xff0c;PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5&#xff01;作为 PHP 语言的又一次重要迭代&#xff0c;PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是&#xff0c;借助强大的本地开发环境 ServBay&am…...

离线语音识别方案分析

随着人工智能技术的不断发展&#xff0c;语音识别技术也得到了广泛的应用&#xff0c;从智能家居到车载系统&#xff0c;语音识别正在改变我们与设备的交互方式。尤其是离线语音识别&#xff0c;由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力&#xff0c;广…...

Xela矩阵三轴触觉传感器的工作原理解析与应用场景

Xela矩阵三轴触觉传感器通过先进技术模拟人类触觉感知&#xff0c;帮助设备实现精确的力测量与位移监测。其核心功能基于磁性三维力测量与空间位移测量&#xff0c;能够捕捉多维触觉信息。该传感器的设计不仅提升了触觉感知的精度&#xff0c;还为机器人、医疗设备和制造业的智…...

​​企业大模型服务合规指南:深度解析备案与登记制度​​

伴随AI技术的爆炸式发展&#xff0c;尤其是大模型&#xff08;LLM&#xff09;在各行各业的深度应用和整合&#xff0c;企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者&#xff0c;还是积极拥抱AI转型的传统企业&#xff0c;在面向公众…...