Python学习计划——9.1多线程编程
并发编程是一种在同一时间段内运行多个任务的方法,可以提高程序的效率和性能。Python中的多线程编程可以使用threading模块实现。以下是多线程编程的详细讲解和可运行的Python案例。
1. 什么是多线程
多线程是一种并发编程的方式,它允许在同一个进程中运行多个线程,每个线程执行不同的任务。线程是轻量级的进程,它们共享相同的内存空间,因此切换上下文的开销较小。
2. 创建线程
在Python中,可以使用threading.Thread类来创建和管理线程。创建线程的基本步骤如下:
- 创建一个继承自
threading.Thread的类,并重写其run方法。 - 实例化该类并调用
start方法启动线程。
示例
import threading
import timeclass MyThread(threading.Thread):def __init__(self, name):threading.Thread.__init__(self)self.name = namedef run(self):print(f"线程 {self.name} 开始")time.sleep(2)print(f"线程 {self.name} 结束")# 创建并启动线程
thread1 = MyThread("Thread-1")
thread2 = MyThread("Thread-2")thread1.start()
thread2.start()thread1.join()
thread2.join()print("主线程结束")
3. 使用线程池
使用concurrent.futures模块中的ThreadPoolExecutor可以方便地管理多个线程。它提供了一个高级接口,用于创建和管理线程池。
示例
from concurrent.futures import ThreadPoolExecutor
import timedef task(name):print(f"任务 {name} 开始")time.sleep(2)print(f"任务 {name} 结束")# 创建线程池
with ThreadPoolExecutor(max_workers=3) as executor:executor.submit(task, "Task-1")executor.submit(task, "Task-2")executor.submit(task, "Task-3")print("主线程结束")
4. 线程同步
线程共享同一内存空间,因此可能会出现多个线程同时访问和修改共享资源的问题。为了解决这个问题,可以使用线程同步机制,如锁(Lock)。
示例
import threading# 共享资源
counter = 0
lock = threading.Lock()def increment_counter():global counterwith lock:for _ in range(100000):counter += 1# 创建并启动线程
thread1 = threading.Thread(target=increment_counter)
thread2 = threading.Thread(target=increment_counter)thread1.start()
thread2.start()thread1.join()
thread2.join()print(f"最终计数值: {counter}")
5. 线程通信
线程之间可以通过队列(Queue)进行通信。queue.Queue类是一个线程安全的队列实现,可以用于在线程之间传递数据。
示例
import threading
import queue
import timedef producer(q):for i in range(5):print(f"生产者生产数据: {i}")q.put(i)time.sleep(1)def consumer(q):while True:item = q.get()if item is None:breakprint(f"消费者消费数据: {item}")time.sleep(2)# 创建队列
q = queue.Queue()# 创建并启动线程
producer_thread = threading.Thread(target=producer, args=(q,))
consumer_thread = threading.Thread(target=consumer, args=(q,))producer_thread.start()
consumer_thread.start()producer_thread.join()# 向队列发送结束信号
q.put(None)
consumer_thread.join()print("主线程结束")
6. 可运行的Python案例
下面是一个完整的Python程序,演示了多线程编程的基本操作,包括创建线程、使用线程池、线程同步和线程通信。
import threading
import time
from concurrent.futures import ThreadPoolExecutor
import queue# 示例1:创建线程
class MyThread(threading.Thread):def __init__(self, name):threading.Thread.__init__(self)self.name = namedef run(self):print(f"线程 {self.name} 开始")time.sleep(2)print(f"线程 {self.name} 结束")thread1 = MyThread("Thread-1")
thread2 = MyThread("Thread-2")thread1.start()
thread2.start()thread1.join()
thread2.join()print("主线程结束")# 示例2:使用线程池
def task(name):print(f"任务 {name} 开始")time.sleep(2)print(f"任务 {name} 结束")with ThreadPoolExecutor(max_workers=3) as executor:executor.submit(task, "Task-1")executor.submit(task, "Task-2")executor.submit(task, "Task-3")print("主线程结束")# 示例3:线程同步
counter = 0
lock = threading.Lock()def increment_counter():global counterwith lock:for _ in range(100000):counter += 1thread1 = threading.Thread(target=increment_counter)
thread2 = threading.Thread(target=increment_counter)thread1.start()
thread2.start()thread1.join()
thread2.join()print(f"最终计数值: {counter}")# 示例4:线程通信
def producer(q):for i in range 5):print(f"生产者生产数据: {i}")q.put(i)time.sleep(1)def consumer(q):while True:item = q.get()if item is None:breakprint(f"消费者消费数据: {item}")time.sleep(2)q = queue.Queue()producer_thread = threading.Thread(target=producer, args=(q,))
consumer_thread = threading.Thread(target=consumer, args=(q,))producer_thread.start()
consumer_thread.start()producer_thread.join()q.put(None)
consumer_thread.join()print("主线程结束")
可以将上面的代码复制到你的IDE中运行,观察程序的输出。这个案例综合了多线程编程的基本知识,帮助你理解和掌握这些操作。继续加油,学习Python会越来越有趣和有用!
相关文章:
Python学习计划——9.1多线程编程
并发编程是一种在同一时间段内运行多个任务的方法,可以提高程序的效率和性能。Python中的多线程编程可以使用threading模块实现。以下是多线程编程的详细讲解和可运行的Python案例。 1. 什么是多线程 多线程是一种并发编程的方式,它允许在同一个进程中…...
借助 NGINX 对本地的 Kubernetes 服务进行自动化的 TCP 负载均衡
原文作者:Chris Akker - F5 技术解决方案架构师,Steve Wagner - F5 NGINX 解决方案架构师 原文链接:借助 NGINX 对本地的 Kubernetes 服务进行自动化的 TCP 负载均衡 转载来源:NGINX 中文官网 NGINX 唯一中文官方社区 ,…...
基于python的大学学生影响力分析系统设计与实现
博主介绍: 大家好,本人精通Java、Python、C#、C、C编程语言,同时也熟练掌握微信小程序、Php和Android等技术,能够为大家提供全方位的技术支持和交流。 我有丰富的成品Java、Python、C#毕设项目经验,能够为学生提供各类…...
upload-labs靶场(1-19关)
upload-labs靶场 简介 upload-labs是一个使用php语言编写的,专门收集渗透测试过程中遇到的各种上传漏洞的靶场。旨在帮助大家对上传漏洞有一个全面的了解。目前一共19关,每一关都包含着不同上传方式。 注意:能运行<?php phpinfo();?&…...
Python面向对象浅析
目录 面向对象基本概念 一、类和对象 类和对象是面向对象骗程的两个核心概念。 在程序开发中,要设计一个类,通常需要满足一下三个要素: self详解: 对象(Object) 魔法方法: 类里的一些特殊方法 __in…...
JS基本语法
JS代码写在body结束标签的上面 如点击按钮调用方法: 在浏览器的控制台打印测试数据 console.log() <body><button type"button" onclick"easymethod()">点击我</button><script>//JS代码,写在body标签的…...
LSTM详解总结
LSTM(Long Short-Term Memory)是一种用于处理和预测时间序列数据的递归神经网络(RNN)的改进版本。其设计初衷是为了解决普通RNN在长序列训练中出现的梯度消失和梯度爆炸问题。以下是对LSTM的详细解释,包括原理、公式、…...
制品库nexus
详见:Sonatype Nexus Repository搭建与使用(详细教程3.70.1)-CSDN博客 注意事项: 1.java8环境使用nexus-3.69.0-02-java8-unix.tar.gz包 2.java11环境使用nexus-3.70.1-02-java11-unix.tar.gz包 3.注意使用制品库/etc/yum.repos.…...
2022.11.17 阿里钉钉数据开发岗位一面
今天晚上和阿里钉钉面试官聊了一面,整个过程持续45分钟,还是相当持久的。前面先让我自我介绍,包括自身背景、工作经历和项目经验,在介绍的时候面试官几次打断,让我停下来,然后他提问,我很纳闷还…...
【无标题】Git(仓库,分支,分支冲突)
Git 一种分布式版本控制系统,用于跟踪和管理代码的变更 一.Git的主要功能: 二.准备git机器 修改静态ip,主机名 三.git仓库的建立: 1.安装git [rootgit ~]# yum -y install git 2.创建一个…...
访问控制列表(ACL)
文章目录 ACL原理与基本配置ACL分类ACL组成ACL规则的匹配与应用 ACL原理与基本配置 ACL(Access Control List,访问控制列表) 读取二层、三层、四层报文信息根据预先定义好的规则对报文进行过滤和分类实现网络访问控制、防止网络攻击和提高网络带宽利用率等目的提高…...
自用git命令(待完善)
----------------------------------------------------------------------------------------- ###基础 git config --global user.name "xxxxx" #设置提交人 name git config --global user.email "xxxxxx163.com" #设置提交人 email git …...
突破•指针四
听说这是目录哦 函数指针数组🫧用途:转移表 回调函数🫧能量站😚 函数指针数组🫧 函数指针数组是存放函数地址的数组,例如int (*parr[5])()中parr先和[]结合,说明parr是可以存放5个函数地址【元…...
深入解析Python `requests`库源码,揭开HTTP请求的神秘面纱!
🔸 第一部分:requests库的入口 我们从requests库的入口开始,通常我们会使用 requests.get() 或 requests.post() 等方法发送HTTP请求。那么,这些方法背后究竟做了些什么呢?我们从requests.get()方法开始看起ÿ…...
day1 服务端与消息编码
文章目录 消息的序列化与反序列化通信过程服务端的实现main 函数(一个简易的客户端) 本文代码地址: 本文是7天用Go从零实现RPC框架GeeRPC的第一篇。 使用 encoding/gob 实现消息的编解码(序列化与反序列化)实现一个简易的服务端,仅接受消息,…...
部署WMS仓储管理系统项目后的注意事项
在探讨现代WMS仓储管理系统的部署与运营时,我们不得不深入剖析其背后的多维度考量与策略,以确保这一核心系统能够无缝融入并推动企业的整体供应链优化。WMS仓储管理系统作为连接仓库内部操作与外部供应链的桥梁,其重要性不言而喻,…...
跨网段 IP 地址通信故障分析
现如今计算机网络的规模和复杂性不断增加,跨网段通信成为网络运行中的常见需求。但如果设备处于不同网段且路由设置出现偏差时就会导致通信故障,严重影响网络的正常运行和数据传输。 1.跨网段通信的基本原理 跨网段通信依赖于路由器的路由功能。路由器根…...
存储引擎MySQL和InnoDB(数据库管理与高可用)
1、存储引擎 存储引擎是核心组成部分, 是构成数据库最基础最底层的部件, 利用这个部件,你的Mysql能够对数据进行查询、创建、更新、删除等操作, 也就是说,用户所输入的一系列的mysql语句,是由存储引擎来…...
探索局域网传输新境界 | 闪电藤 v2.2.7
在这个数字化时代,文件的快速、安全传输是我们日常工作中不可或缺的一部分。今天,电脑天空向大家介绍一款革命性的局域网文件传输工具——闪电藤,它将彻底改变你的文件传输体验。 🎨 界面设计 —— 极简之美 闪电藤采用极简的设…...
Tiling Window Management
我主要说一下windows版的 下面这个链接用的人比较多 GitHub - LGUG2Z/komorebi: A tiling window manager for Windows 🍉 建议搭配 GitHub - da-rth/yasb: A highly configurable cross-platform (Windows) status bar written in Python. GitHub - amnweb/ya…...
智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用
1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...
ios苹果系统,js 滑动屏幕、锚定无效
现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)
LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 题目描述解题思路Java代码 题目描述 题目链接:LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
