Python学习计划——9.1多线程编程
并发编程是一种在同一时间段内运行多个任务的方法,可以提高程序的效率和性能。Python中的多线程编程可以使用threading
模块实现。以下是多线程编程的详细讲解和可运行的Python案例。
1. 什么是多线程
多线程是一种并发编程的方式,它允许在同一个进程中运行多个线程,每个线程执行不同的任务。线程是轻量级的进程,它们共享相同的内存空间,因此切换上下文的开销较小。
2. 创建线程
在Python中,可以使用threading.Thread
类来创建和管理线程。创建线程的基本步骤如下:
- 创建一个继承自
threading.Thread
的类,并重写其run
方法。 - 实例化该类并调用
start
方法启动线程。
示例
import threading
import timeclass MyThread(threading.Thread):def __init__(self, name):threading.Thread.__init__(self)self.name = namedef run(self):print(f"线程 {self.name} 开始")time.sleep(2)print(f"线程 {self.name} 结束")# 创建并启动线程
thread1 = MyThread("Thread-1")
thread2 = MyThread("Thread-2")thread1.start()
thread2.start()thread1.join()
thread2.join()print("主线程结束")
3. 使用线程池
使用concurrent.futures
模块中的ThreadPoolExecutor
可以方便地管理多个线程。它提供了一个高级接口,用于创建和管理线程池。
示例
from concurrent.futures import ThreadPoolExecutor
import timedef task(name):print(f"任务 {name} 开始")time.sleep(2)print(f"任务 {name} 结束")# 创建线程池
with ThreadPoolExecutor(max_workers=3) as executor:executor.submit(task, "Task-1")executor.submit(task, "Task-2")executor.submit(task, "Task-3")print("主线程结束")
4. 线程同步
线程共享同一内存空间,因此可能会出现多个线程同时访问和修改共享资源的问题。为了解决这个问题,可以使用线程同步机制,如锁(Lock)。
示例
import threading# 共享资源
counter = 0
lock = threading.Lock()def increment_counter():global counterwith lock:for _ in range(100000):counter += 1# 创建并启动线程
thread1 = threading.Thread(target=increment_counter)
thread2 = threading.Thread(target=increment_counter)thread1.start()
thread2.start()thread1.join()
thread2.join()print(f"最终计数值: {counter}")
5. 线程通信
线程之间可以通过队列(Queue)进行通信。queue.Queue
类是一个线程安全的队列实现,可以用于在线程之间传递数据。
示例
import threading
import queue
import timedef producer(q):for i in range(5):print(f"生产者生产数据: {i}")q.put(i)time.sleep(1)def consumer(q):while True:item = q.get()if item is None:breakprint(f"消费者消费数据: {item}")time.sleep(2)# 创建队列
q = queue.Queue()# 创建并启动线程
producer_thread = threading.Thread(target=producer, args=(q,))
consumer_thread = threading.Thread(target=consumer, args=(q,))producer_thread.start()
consumer_thread.start()producer_thread.join()# 向队列发送结束信号
q.put(None)
consumer_thread.join()print("主线程结束")
6. 可运行的Python案例
下面是一个完整的Python程序,演示了多线程编程的基本操作,包括创建线程、使用线程池、线程同步和线程通信。
import threading
import time
from concurrent.futures import ThreadPoolExecutor
import queue# 示例1:创建线程
class MyThread(threading.Thread):def __init__(self, name):threading.Thread.__init__(self)self.name = namedef run(self):print(f"线程 {self.name} 开始")time.sleep(2)print(f"线程 {self.name} 结束")thread1 = MyThread("Thread-1")
thread2 = MyThread("Thread-2")thread1.start()
thread2.start()thread1.join()
thread2.join()print("主线程结束")# 示例2:使用线程池
def task(name):print(f"任务 {name} 开始")time.sleep(2)print(f"任务 {name} 结束")with ThreadPoolExecutor(max_workers=3) as executor:executor.submit(task, "Task-1")executor.submit(task, "Task-2")executor.submit(task, "Task-3")print("主线程结束")# 示例3:线程同步
counter = 0
lock = threading.Lock()def increment_counter():global counterwith lock:for _ in range(100000):counter += 1thread1 = threading.Thread(target=increment_counter)
thread2 = threading.Thread(target=increment_counter)thread1.start()
thread2.start()thread1.join()
thread2.join()print(f"最终计数值: {counter}")# 示例4:线程通信
def producer(q):for i in range 5):print(f"生产者生产数据: {i}")q.put(i)time.sleep(1)def consumer(q):while True:item = q.get()if item is None:breakprint(f"消费者消费数据: {item}")time.sleep(2)q = queue.Queue()producer_thread = threading.Thread(target=producer, args=(q,))
consumer_thread = threading.Thread(target=consumer, args=(q,))producer_thread.start()
consumer_thread.start()producer_thread.join()q.put(None)
consumer_thread.join()print("主线程结束")
可以将上面的代码复制到你的IDE中运行,观察程序的输出。这个案例综合了多线程编程的基本知识,帮助你理解和掌握这些操作。继续加油,学习Python会越来越有趣和有用!
相关文章:
Python学习计划——9.1多线程编程
并发编程是一种在同一时间段内运行多个任务的方法,可以提高程序的效率和性能。Python中的多线程编程可以使用threading模块实现。以下是多线程编程的详细讲解和可运行的Python案例。 1. 什么是多线程 多线程是一种并发编程的方式,它允许在同一个进程中…...

借助 NGINX 对本地的 Kubernetes 服务进行自动化的 TCP 负载均衡
原文作者:Chris Akker - F5 技术解决方案架构师,Steve Wagner - F5 NGINX 解决方案架构师 原文链接:借助 NGINX 对本地的 Kubernetes 服务进行自动化的 TCP 负载均衡 转载来源:NGINX 中文官网 NGINX 唯一中文官方社区 ,…...
基于python的大学学生影响力分析系统设计与实现
博主介绍: 大家好,本人精通Java、Python、C#、C、C编程语言,同时也熟练掌握微信小程序、Php和Android等技术,能够为大家提供全方位的技术支持和交流。 我有丰富的成品Java、Python、C#毕设项目经验,能够为学生提供各类…...

upload-labs靶场(1-19关)
upload-labs靶场 简介 upload-labs是一个使用php语言编写的,专门收集渗透测试过程中遇到的各种上传漏洞的靶场。旨在帮助大家对上传漏洞有一个全面的了解。目前一共19关,每一关都包含着不同上传方式。 注意:能运行<?php phpinfo();?&…...

Python面向对象浅析
目录 面向对象基本概念 一、类和对象 类和对象是面向对象骗程的两个核心概念。 在程序开发中,要设计一个类,通常需要满足一下三个要素: self详解: 对象(Object) 魔法方法: 类里的一些特殊方法 __in…...

JS基本语法
JS代码写在body结束标签的上面 如点击按钮调用方法: 在浏览器的控制台打印测试数据 console.log() <body><button type"button" onclick"easymethod()">点击我</button><script>//JS代码,写在body标签的…...

LSTM详解总结
LSTM(Long Short-Term Memory)是一种用于处理和预测时间序列数据的递归神经网络(RNN)的改进版本。其设计初衷是为了解决普通RNN在长序列训练中出现的梯度消失和梯度爆炸问题。以下是对LSTM的详细解释,包括原理、公式、…...

制品库nexus
详见:Sonatype Nexus Repository搭建与使用(详细教程3.70.1)-CSDN博客 注意事项: 1.java8环境使用nexus-3.69.0-02-java8-unix.tar.gz包 2.java11环境使用nexus-3.70.1-02-java11-unix.tar.gz包 3.注意使用制品库/etc/yum.repos.…...
2022.11.17 阿里钉钉数据开发岗位一面
今天晚上和阿里钉钉面试官聊了一面,整个过程持续45分钟,还是相当持久的。前面先让我自我介绍,包括自身背景、工作经历和项目经验,在介绍的时候面试官几次打断,让我停下来,然后他提问,我很纳闷还…...

【无标题】Git(仓库,分支,分支冲突)
Git 一种分布式版本控制系统,用于跟踪和管理代码的变更 一.Git的主要功能: 二.准备git机器 修改静态ip,主机名 三.git仓库的建立: 1.安装git [rootgit ~]# yum -y install git 2.创建一个…...

访问控制列表(ACL)
文章目录 ACL原理与基本配置ACL分类ACL组成ACL规则的匹配与应用 ACL原理与基本配置 ACL(Access Control List,访问控制列表) 读取二层、三层、四层报文信息根据预先定义好的规则对报文进行过滤和分类实现网络访问控制、防止网络攻击和提高网络带宽利用率等目的提高…...
自用git命令(待完善)
----------------------------------------------------------------------------------------- ###基础 git config --global user.name "xxxxx" #设置提交人 name git config --global user.email "xxxxxx163.com" #设置提交人 email git …...

突破•指针四
听说这是目录哦 函数指针数组🫧用途:转移表 回调函数🫧能量站😚 函数指针数组🫧 函数指针数组是存放函数地址的数组,例如int (*parr[5])()中parr先和[]结合,说明parr是可以存放5个函数地址【元…...
深入解析Python `requests`库源码,揭开HTTP请求的神秘面纱!
🔸 第一部分:requests库的入口 我们从requests库的入口开始,通常我们会使用 requests.get() 或 requests.post() 等方法发送HTTP请求。那么,这些方法背后究竟做了些什么呢?我们从requests.get()方法开始看起ÿ…...
day1 服务端与消息编码
文章目录 消息的序列化与反序列化通信过程服务端的实现main 函数(一个简易的客户端) 本文代码地址: 本文是7天用Go从零实现RPC框架GeeRPC的第一篇。 使用 encoding/gob 实现消息的编解码(序列化与反序列化)实现一个简易的服务端,仅接受消息,…...

部署WMS仓储管理系统项目后的注意事项
在探讨现代WMS仓储管理系统的部署与运营时,我们不得不深入剖析其背后的多维度考量与策略,以确保这一核心系统能够无缝融入并推动企业的整体供应链优化。WMS仓储管理系统作为连接仓库内部操作与外部供应链的桥梁,其重要性不言而喻,…...

跨网段 IP 地址通信故障分析
现如今计算机网络的规模和复杂性不断增加,跨网段通信成为网络运行中的常见需求。但如果设备处于不同网段且路由设置出现偏差时就会导致通信故障,严重影响网络的正常运行和数据传输。 1.跨网段通信的基本原理 跨网段通信依赖于路由器的路由功能。路由器根…...

存储引擎MySQL和InnoDB(数据库管理与高可用)
1、存储引擎 存储引擎是核心组成部分, 是构成数据库最基础最底层的部件, 利用这个部件,你的Mysql能够对数据进行查询、创建、更新、删除等操作, 也就是说,用户所输入的一系列的mysql语句,是由存储引擎来…...

探索局域网传输新境界 | 闪电藤 v2.2.7
在这个数字化时代,文件的快速、安全传输是我们日常工作中不可或缺的一部分。今天,电脑天空向大家介绍一款革命性的局域网文件传输工具——闪电藤,它将彻底改变你的文件传输体验。 🎨 界面设计 —— 极简之美 闪电藤采用极简的设…...
Tiling Window Management
我主要说一下windows版的 下面这个链接用的人比较多 GitHub - LGUG2Z/komorebi: A tiling window manager for Windows 🍉 建议搭配 GitHub - da-rth/yasb: A highly configurable cross-platform (Windows) status bar written in Python. GitHub - amnweb/ya…...

19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...

linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...

关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...

Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...