当前位置: 首页 > news >正文

Eclipse 主网向开发者开放

在这里插入图片描述

摘要:Eclipse 基金会宣布,Eclipse 主网已经向开发者开放。在接下来几周的时间里,Eclipse 将邀请开发者在主网上部署项目,并参加黑客马拉松活动——“Total Eclipse Challenge”。

Eclipse 是首个基于以太坊的 SVM Layer2 方案,将 Solana 的高速性能与以太坊的流动性相结合。Eclipse 选择在以太坊上构建,使开发者能够基于用户和资产进行应用开发,并使用经过验证最为高效的区块链执行环境——Solana 虚拟机,以优先考虑可扩展性和用户体验。这也正是我们看好在以太坊上构建 Solana 项目的原因。因此,我们很高兴地宣布,Eclipse 主网已经向开发者开放。

在这个阶段,我们的目标是确保开发者能够获得如下支持:

无缝部署:开发者能够轻松、安全地将他们的 dapp 部署到 Eclipse 上。

获得快速技术支持:Eclipse 团队将在 Discord 的 #developers 频道给 dapp 团队提供实时支持。

成为 Eclipse 生态系统的一部分:开发者与其他开发者深入交流,了解生态系统,相互帮助,并建立积极的合作关系。

开发者可以通过访问 Eclipse 的文档并开始开发:

RPC 访问:开发者可以在 Eclipse 的文档中选择适合 Eclipse 主网的 RPC 访问(https://docs.eclipse.xyz/)。

ETH 代币的跨链:在这个阶段,还没有公开可用的跨链用户界面。开发者可以通过命令行界面将 ETH 代币桥接到 Eclipse 上,具体指南请参考(https://docs.eclipse.xyz/developers/bridge/eclipse-canonical-bridge )。

注意:请勿将除 ETH 以外的任何资产发送到以太坊主网上的标准桥接合约中。

邀请所有开发者

作为 Eclipse 主网计划的一部分,我们非常高兴地宣布 “Total Eclipse Challenge” 黑客马拉松活动,将于 8 月 7 日至 8 月 21 日举行。

“Total Eclipse Challenge” 将是一场为期两周的全球虚拟黑客马拉松活动,邀请创新者探索他们最新的 dapp 创意,并提供近 50,000 美元的全球奖金。此次黑客马拉松将设有五个不同的赛道,包括 Defi、Gaming、Consumer、Memecoins 和 Infrastructure,并配备各种演讲和研讨会以及世界级评委和导师。

注册参加黑客马拉松,并访问网站了解更多信息:https://www.eclipse.xyz/hackathon

为主网向下一个阶段发展做准备

Eclipse 期望成为以太坊上性能最好的 Layer2。Eclipse 面向开发者的主网目前还处于训练模式。它具有集中式的跨链桥,不含运行时欺诈证明、提款或强制包含功能。用户必须信任 Eclipse 的中继器、Roll-up 多签合约(用于可升级性)和排序器(用于活跃性和安全性)。Eclipse 基金会将在构建以太坊的第一个 SVM L2 时解决这些问题。我们最初的目标是尽快过渡到第一阶段的 Roll-up,并提供无需许可的欺诈证明和最小化信任度的桥接器。

下一阶段公共主网部署将向公众开放,至少会启用提现功能。

在主网公开发布后:

将您的 dapp 前端部署在 Eclipse 上

在 Discord/Twitter 上与您的社区分享(@EclipseFND)

结语

Eclipse 基金会致力于发布一个功能完善、安全可靠、去中心化且运行速度快的公共主网。我们计划全力以赴,优先解决上述训练模式的问题,并以尽可能快速而安全的方式过渡到第一阶段,然后是第二阶段的 Roll-up。

在我们朝着这个最终目标努力的同时,我们非常兴奋地欢迎您加入 Eclipse 未来区块链创新之旅。

Eclipse Everything.

附加条款适用;在禁止的地区无效。

相关文章:

Eclipse 主网向开发者开放

摘要:Eclipse 基金会宣布,Eclipse 主网已经向开发者开放。在接下来几周的时间里,Eclipse 将邀请开发者在主网上部署项目,并参加黑客马拉松活动——“Total Eclipse Challenge”。 Eclipse 是首个基于以太坊的 SVM Layer2 方案&am…...

国内NAT服务器docker方式搭建rustdesk服务

前言 如果遇到10054,就不要设置id服务器!!! 由于遇到大带宽,但是又贵,所以就NAT的啦,但是只有ipv4共享和一个ipv6,带宽50MB(活动免费会升130MB~) https://bigchick.xyz/aff.php?aff322 月付-5 循环 :CM-CQ-Monthly-5 年付-60循环:CM-CQ-Annually-60官方…...

锅总浅析链路追踪技术

链路追踪是什么?常用的链路追踪工具有哪些?它们的异同、架构、工作流程及关键指标有哪些?希望读完本文能帮您解答这些疑惑! 一、链路追踪简介 链路追踪技术(Distributed Tracing)是一种用于监控和分析分布…...

为什么阿里开发手册不建议使用Date类?

在日常编码中,基本上99%的项目都会有一个DateUtil工具类,而时间工具类里用的最多的就是java.util.Date。 大家都这么写,这还能有问题?? 当你的“默认常识”出现问题,这个打击,就是毁灭性的。 …...

中间层 k8s(Kubernetes) 到底是什么,架构是怎么样的?

你是一个程序员,你用代码写了一个博客应用服务,并将它部署在了云平台上。 但应用服务太过受欢迎,访问量太大,经常会挂。 所以你用了一些工具自动重启挂掉的应用服务,并且将应用服务部署在了好几个服务器上,…...

【CTFWP】ctfshow-web40

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 题目介绍:题目分析:payload:payload解释:payload2:payload2解释:flag 题目介绍: …...

项目实战1(30小时精通C++和外挂实战)

项目实战1(30小时精通C和外挂实战) 01-MFC1-图标02-MFC2-按钮、调试、打开网页05-MFC5-checkbox及按钮绑定对象06--文件格式、OD序列号08-暴力破解09-CE10-秒杀僵尸 01-MFC1-图标 这个外挂只针对植物大战僵尸游戏 开发这个外挂,首先要将界面…...

百日筑基第三十六天

今日论道还算顺利,只可惜感到也没学到什么东西。晚些时候师祖问话,主要是来这边之后有什么困难之类,好像也没遇到需要他来帮我解决的困难,于是问了些修炼方法之类。...

MySQL: ALTER

正文 在数据库管理系统(DBMS)中,DDL(Data Definition Language)、DCL(Data Control Language)、和 DML(Data Manipulation Language)是三种主要的SQL(Struct…...

微前端技术预研 - bit初体验

1.关于什么是微前端以及微前端的发展, 当前主流框架以及实现技术等,可参考这篇总结(非常全面), 微前端总结:目录详见下图 本文内容主要针对bit框架的实时思路以及具体使用。 1.什么是Bit? Bit 是可组合软件的构建…...

对象关系映射---ORM

一、什么是ORM? ORM(Object Relational Mapping),即对象关系映射,是一种程序设计技术,用于在面向对象编程语言中实现对象和关系型数据库之间的映射。 二、ORM是干什么的? ORM 的主要目的是简…...

Django REST Framework(十七)Authentication

1.认证Authentication 在 Django REST framework (DRF) 中,可以在配置文件中配置全局默认的认证方案。常见的认证方式包括 cookie、session、和 token。DRF 提供了灵活的认证机制,可以在全局配置文件中设置默认认证方式,也可以在具体的视图类…...

FPGA开发——数码管的使用

一、概述 在我们的日常开发中,数字显示的领域中用得最多的就是数码管,这篇文章也是围绕数码管的静态显示和动态显示进行一个讲解。 1、理论 (1)数码管原理图 在对数码管进行相关控制时,其实就是对于8段发光二极管和…...

什么是网络安全等级保护测评服务?

等保测评 依据国家网络安全等级保护制度规定,按照有关管理规范和技术标准,对非涉及国家秘密的网络安全等级保护状况进行检测评估。定级协助 根据等级保护对象在国家安全、经济建设、社会生活中的重要程度,以及一旦遭到破坏、丧失功能或者数据…...

基于深度学习的多模态情感分析

基于深度学习的多模态情感分析是一个结合不同类型数据(如文本、图像、音频等)来检测和分析情感的领域。它利用深度学习技术来处理和融合多模态信息,从而提高情感分析的准确性和鲁棒性。以下是对这一领域的详细介绍: 1. **多模态情…...

Glove-词向量

文章目录 共现矩阵共线概率共线概率比词向量训练总结词向量存在的问题 上一篇文章词的向量化介绍了词的向量化,词向量的训练方式可以基于语言模型、基于窗口的CBOW和SKipGram的这几种方法。今天介绍的Glove也是一种训练词向量的一种方法,他是基于共现概率…...

Plugin ‘mysql_native_password‘ is not loaded`

Plugin mysql_native_password is not loaded mysql_native_password介绍1. 使用默认的认证插件2. 修改 my.cnf 或 my.ini 配置文件3. 加载插件(如果确实没有加载)4. 重新安装或检查 MySQL 版本 遇到错误 ERROR 1524 (HY000): Plugin mysql_native_passw…...

Hive数据类型

原生数据类型 准备数据 查看表信息 加载数据 查看数据 复杂数据类型-数组 准备数据 查看数据 ​优化 复杂数据类型-map 准备数据 查看数据 复杂数据类型-默认分隔符 准备数据 查看数据 原生数据类型 准备数据 -- 1 建库 drop database if exists db_1 cascade;…...

OSI七层网络模型:构建网络通信的基石

在计算机网络领域,OSI(Open Systems Interconnection)七层模型是理解网络通信过程的关键框架。该模型将网络通信过程细分为七个层次,每一层都有其特定的功能和职责,共同协作完成数据从发送端到接收端的传输。接下来&am…...

MSYS2下载安装和使用

Minimalist GNU(POSIX)system on Windows,Windows下的GNU环境。 目录 1. 安装 2. pacman命令 3. 配置vim 4. 一些使用示例 4.1 编译代码 4.2 SSH登录远程服务器 1. 安装 官网下载:https://www.msys2.org/ 双击.exe文件&am…...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM&#xff09…...

2023赣州旅游投资集团

单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...

【生成模型】视频生成论文调研

工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...