当前位置: 首页 > news >正文

算法学习6——贪心算法

什么是贪心算法?

贪心算法是一种在每一步选择中都采取当前状态下最优或最有利的选择的算法。其核心思想是通过一系列局部最优选择来达到全局最优解。贪心算法广泛应用于各种优化问题,如最短路径、最小生成树、背包问题等。

贪心算法的特点

  1. 局部最优选择:每一步都做出在当前情况下最优的选择。
  2. 无后效性:一旦某个状态被确定,就不会再被改变或回溯。
  3. 逐步构造解决方案:通过一系列的选择逐步构建出最终的解决方案。

经典例子及其Python实现

1. 活动选择问题

问题描述:给定一组活动,每个活动有一个开始时间和结束时间,要求选择尽可能多的互不重叠的活动。

贪心策略:每次选择结束时间最早且不与已选择活动重叠的活动。

实现过程

  1. 将所有活动按结束时间排序。
  2. 依次选择结束时间最早且不与已选择活动重叠的活动。

Python代码

def activity_selection(activities):# 按结束时间排序activities.sort(key=lambda x: x[1])# 选择活动selected_activities = [activities[0]]last_end_time = activities[0][1]for start, end in activities[1:]:if start >= last_end_time:selected_activities.append((start, end))last_end_time = endreturn selected_activities# 示例
activities = [(1, 4), (3, 5), (0, 6), (5, 7), (3, 9), (5, 9), (6, 10), (8, 11), (8, 12), (2, 14), (12, 16)]
print(activity_selection(activities))

2. 背包问题

问题描述:给定一组物品,每个物品有重量和价值,要求在总重量不超过背包容量的前提下,使背包中的物品总价值最大。

贪心策略:每次选择单位重量价值最高的物品。

实现过程

  1. 将所有物品按单位重量价值排序。
  2. 依次选择单位重量价值最高且不超过剩余容量的物品。

Python代码

def knapsack(items, capacity):# 按单位重量价值排序items.sort(key=lambda x: x[1]/x[0], reverse=True)total_value = 0for weight, value in items:if capacity >= weight:capacity -= weighttotal_value += valueelse:total_value += value * (capacity / weight)breakreturn total_value# 示例
items = [(10, 60), (20, 100), (30, 120)]
capacity = 50
print(knapsack(items, capacity))

3. 哈夫曼编码

问题描述:给定一组字符及其出现频率,要求构造一个前缀码,使得编码后的字符串长度最短。

贪心策略:每次选择出现频率最低的两个字符合并,构造哈夫曼树。

实现过程

  1. 将所有字符按频率构造最小堆。
  2. 依次取出频率最低的两个节点,合并后重新插入堆中。
  3. 重复上述过程,直到所有节点合并为一棵树。

Python代码

import heapqdef huffman_encoding(frequencies):heap = [[weight, [symbol, ""]] for symbol, weight in frequencies.items()]heapq.heapify(heap)while len(heap) > 1:lo = heapq.heappop(heap)hi = heapq.heappop(heap)for pair in lo[1:]:pair[1] = '0' + pair[1]for pair in hi[1:]:pair[1] = '1' + pair[1]heapq.heappush(heap, [lo[0] + hi[0]] + lo[1:] + hi[1:])return sorted(heapq.heappop(heap)[1:], key=lambda p: (len(p[-1]), p))# 示例
frequencies = {'a': 45, 'b': 13, 'c': 12, 'd': 16, 'e': 9, 'f': 5}
print(huffman_encoding(frequencies))

结论

贪心算法通过局部最优选择来构建全局最优解,简单高效,适用于多种优化问题。然而,贪心算法并不总是能得到最优解,因此在使用前需要确保问题满足贪心选择性质。

相关文章:

算法学习6——贪心算法

什么是贪心算法? 贪心算法是一种在每一步选择中都采取当前状态下最优或最有利的选择的算法。其核心思想是通过一系列局部最优选择来达到全局最优解。贪心算法广泛应用于各种优化问题,如最短路径、最小生成树、背包问题等。 贪心算法的特点 局部最优选…...

【C++】标准库:介绍string类

string 一.string类介绍二.string类的静态成员变量三.string类的常用接口1.构造函数(constructor)2.析构函数(destructor)3.运算符重载(operator)1.operator2.operator[]3.operator4.operator 4.string的四…...

未来不会使用 AI 的人真的会被淘汰吗?

AI 是今年大火的一个话题,随着 ChatGPT 之类的一系列大模型开始流行以后,有不少的培训机构宣称这样的口号: “未来不会使用 AI 的人将会被淘汰”。我觉得这个观点本身并没有错,但是关键在于那些培训机构出于自身的利益,故意忽略了…...

K8S及Rancher部署

前言 这篇文写的有点子啰嗦,甚至为了控制篇幅我还分出了其他好几篇文章,只在本文中保留了我认为必须存在。而之所以篇幅这么长,一方面是我在相关领域完全新手,啥啥都不会;而另一方面是我所参考的资料都过于精简&#…...

Qt Creator使用git管理代码

1.在GitHub中新建仓库,设置好仓库名后,其它的设置默认即可。 2.打开git bash,输入以下命令: git config --global user.name "xxxxx" #设置你的GitHub用户名 git config --global user.email "xxxxxxxxx.…...

pandas教程:pandas读取csv文件并指定字段数据类型

文章目录 pandas指定数据类型处理数据类型错误parse_dates参数pandas数据类型处理示例pandas指定数据类型 在读取csv文件时,我们可以使用dtype参数来指定每个列的数据类型。这个参数接受一个字典类型的值,其中键是列名,值是数据类型。数据类型可以是Pandas类型或NumPy类型,…...

c#中使用数据验证器

前言 在很多情况下,用户的输入不一定满足我们的设计要求,需要验证输入是否正确,传统的方案是拿到控件数据进行逻辑判定验证后,给用户弹窗提示。这种方法有点职责延后的感觉,数据视图层应该很好的处理用户的输入。使用…...

Java真人版猫爪老鼠活动报名平台系统

🐾“真人版猫爪老鼠活动报名平台系统”——趣味追逐,等你来战!🐭 🐱【萌宠变主角,现实版趣味游戏】 厌倦了电子屏幕的虚拟游戏?来试试“真人版猫爪老鼠活动”吧!在这个平台上&…...

Git原理与用法系统总结

目录 Reference前言版本控制系统Git的诞生配置Git配置用户名和邮件配置颜色配置.gitignore文件 Git的基础用法初始化仓库克隆现有的仓库添加暂存文件提交变动到仓库比较变动查看日志Git回退Git重置暂存区 Git版本管理重新提交取消暂存撤销对文件的修改 Git分支Git分支的优势Git…...

连载|浅谈红队中的权限维持(六)-Linux 主机后门与Linux 隐藏文件

本文来源无问社区,更多实战内容,渗透思路可前往查看http://www.wwlib.cn/index.php/artread/artid/11584.html 0x01 Linux 主机后门 1、添加用户 一句话添加用户 useradd test;echo -e "123456n123456n" |passwd test 或者使用 openssl …...

tomato-靶机渗透

tomato-靶机 一、安装靶机环境 下载双击.ova文件,写文件名路径导入 打开虚拟机用NAT模式 编辑–>虚拟网络编辑器查看IP段 二、信息收集 1.御剑端口扫描查找该虚拟机的IP 访问网站 扫目录 dirb http://192.168.30.130 收集到目录 /server-status /antibot_im…...

git的配置使用

第三周 Tursday 早 git日志的安装使用 [rootweb ~]# yum -y install git.x86_64 //安装软件包 [rootweb ~]# rpm -ql git //查看git的包 ​ [rootweb ~]# mkdir /yy000 //创建新目录 [rootweb ~]# cd /yy000/ [rootweb yy000]# git init //将当前目录做为仓库…...

【1.0】drf初识

【1.0】drf初识 【一】前后端开发模式 【1】前后端混合开发 【示例】flask混合、django混合【案例】bbs项目 模板:dtl语法(django template language)模板语法 {{}} /{% %}后端渲染 qs对象–遍历循环到模板中–使用模板语法渲染渲染完成后 得到纯粹的…...

SparkSQL---编程模型的操作,数据加载与落地及自定义函数的使用

一、SparkSQL编程模型的创建与转化 1、DataFrame的构建 people.txt数据: 1 zhangsan 20 2 lisi 29 3 wangwu 25 4 zhaoliu 30 5 tianqi 35 6 kobe 40 people.json数据:在SparkSQL—简介及RDD V.S DataFrame V.S Dataset编程模型详解里 1、从Spark数据…...

文件解析漏洞--IIS--Vulhub

文件解析漏洞 一、IIS解析漏洞 用windowserver2003安装IIS测试 1.1 IIS6.X 方法一:目录解析 在网站下建立文件夹的名字为.asp/.asa的文件夹,其目录内的任何扩展名的文件都被IIS当作asp文件来解析并执行。 1.txt文件里是asp文件的语法查看当前时间 方…...

你知道缓存的这个问题到底把多少程序员坑惨了吗?

在现代系统中,缓存可以极大地提升性能,减少数据库的压力。 然而,一旦缓存和数据库的数据不一致,就会引发各种诡异的问题。 我们来看看几种常见的解决缓存与数据库不一致的方案,每种方案都有各自的优缺点 先更新缓存&…...

飞创直线模组桁架机械手优势及应用领域

随着工业自动化和智能制造的发展,直线模组桁架机械手极大地减轻了人类的体力劳动负担,在危险性、重复性高的作业环境中展现出了非凡的替代能力,引领着工业生产向自动化、智能化方向迈进。 一、飞创直线模组桁架机械手优势 飞创直线模组桁架…...

TongHttpServer 简介

1. 概述 随着网络技术的飞速发展,高并发大用户场景越来越普遍,单一应用服务节点已经不能满足并发需求,为了提高整个系统可靠性,扩展性,吞吐率,通常将多个应用服务器通过硬负载/软负载组成集群,负载均衡器根据不同负载算法将请求分发到各个应用服务器节点。 Tong…...

回溯法---组合总和

题目: 给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。 candidates 中的 同一个 数字可以 无限…...

将Android Library项目发布到JitPack仓库

将项目代码导入Github 1.将本地项目目录初始化为 Git 仓库。 默认情况下,初始分支称为 main; 如果使用 Git 2.28.0 或更高版本,则可以使用 -b 设置默认分支的名称。 git init -b main 如果使用 Git 2.27.1 或更低版本,则可以使用 git symbo…...

OpenLayers 可视化之热力图

注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...

ESP32读取DHT11温湿度数据

芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"&#xff0…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...