当前位置: 首页 > news >正文

基于鲸鱼算法的极限学习机(ELM)分类算法-附代码

基于鲸鱼算法的极限学习机(ELM)分类算法

文章目录

  • 基于鲸鱼算法的极限学习机(ELM)分类算法
    • 1.极限学习机原理概述
    • 2.ELM学习算法
    • 3.分类问题
    • 4.基于鲸鱼算法优化的ELM
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:本文利用鲸鱼算法对极限学习机进行优化,并用于分类问题

1.极限学习机原理概述

典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量 。 为不失一般性,设输 入层与隐含层间的连接权值 w 为:
w=[w11w12...w1,nw21w22...w2n...wl1wl2...wln](1)w =\left[\begin{matrix}w_{11}&w_{12}&...&w_{1,n}\\ w_{21}&w_{22}&...&w_{2n}\\ ...\\ w_{l1}&w_{l2}&...&w_{ln} \end{matrix}\right]\tag{1} w=w11w21...wl1w12w22wl2.........w1,nw2nwln(1)
其中,wnw_nwn表示输入层第iii个神经元与隐含层第jjj个神经元间的连接权值。

设隐含层与输出层间的连接权值 , 为β\betaβ:
β=[β11β12...β1mβ21β22...β2m...βl1βl2...βlm](2)\beta =\left[\begin{matrix} \beta_{11}&\beta_{12}&...&\beta_{1m}\\ \beta_{21}&\beta_{22}&...&\beta_{2m}\\ ...\\ \beta_{l1}&\beta_{l2}&...&\beta_{lm} \end{matrix}\right] \tag{2} β=β11β21...βl1β12β22βl2.........β1mβ2mβlm(2)
其中,自βjk\beta_{jk}βjk表示隐含层第 j 个神经元与输出层第 k个神经元间的连接权值。

设隐含层神经元的阈值值 b 为:
b=[b1b2...bl](3)b =\left[\begin{matrix}b_1\\ b_2\\ ...\\ b_l \end{matrix}\right]\tag{3} b=b1b2...bl(3)
设具有 Q 个样本的训练集输入矩阵 X 和输出矩阵 Y 分别为
X=[x11x12...x1Qx21x22...x2Q...xn1xn2...xnQ](4)X =\left[\begin{matrix}x_{11}&x_{12}&...&x_{1Q}\\ x_{21}&x_{22}&...&x_{2Q}\\ ...\\ x_{n1}&x_{n2}&...&x_{nQ} \end{matrix}\right]\tag{4} X=x11x21...xn1x12x22xn2.........x1Qx2QxnQ(4)

KaTeX parse error: Undefined control sequence: \matrix at position 11: Y =\left[\̲m̲a̲t̲r̲i̲x̲{y_{11},y_{12},…

设隐含层神经元的激活函数为 g(x),则由图1 可得, 网络的输出 T 为:
T=[t1,..,tQ]m∗Q,tj=[t1j,...,tmj]T=[∑i=1tβi1g(wixj+bi)∑i=1tβi2g(wixj+bi)...∑i=1tβimg(wixj+bi)]m∗1,(j=1,2,...,Q)(6)T = [t_1,..,t_Q]_{m*Q},t_j = [t_{1j},...,t_{mj}]^T =\left[\begin{matrix}\sum_{i=1}^t\beta_{i1}g(w_ix_j + b_i)\\ \sum_{i=1}^t\beta_{i2}g(w_ix_j + b_i)\\ ...\\ \sum_{i=1}^t\beta_{im}g(w_ix_j + b_i) \end{matrix}\right]_{m*1},(j=1,2,...,Q)\tag{6} T=[t1,..,tQ]mQ,tj=[t1j,...,tmj]T=i=1tβi1g(wixj+bi)i=1tβi2g(wixj+bi)...i=1tβimg(wixj+bi)m1,(j=1,2,...,Q)(6)
式(6)可表示为:
Hβ=T’(7)H\beta = T’ \tag{7} Hβ=T(7)
其中, T’为矩阵 T 的转置; H 称为神经网络的隐含层输出矩阵 , 具体形式如下 :
H(w1,...,wi,b1,...,bl,x1,...,xQ)=[g(w1∗x1+b1)g(w2∗x1+b2)...g(wl∗x1+bl)g(w1∗x2+b1)g(w2∗x2+b2)...g(wl∗x2+bl)...g(w1∗xQ+b1)g(w2∗xQ+b2)...g(wl∗xQ+bl)]Q∗lH(w_1,...,w_i,b_1,...,b_l,x_1,...,x_Q) =\left[\begin{matrix} g(w_1*x_1 + b_1)&g(w_2*x_1 + b_2)&...&g(w_l*x_1 + b_l)\\ g(w_1*x_2 + b_1)&g(w_2*x_2 + b_2)&...&g(w_l*x_2 + b_l)\\ ...\\ g(w_1*x_Q + b_1)&g(w_2*x_Q + b_2)&...&g(w_l*x_Q + b_l) \end{matrix}\right]_{Q*l} H(w1,...,wi,b1,...,bl,x1,...,xQ)=g(w1x1+b1)g(w1x2+b1)...g(w1xQ+b1)g(w2x1+b2)g(w2x2+b2)g(w2xQ+b2).........g(wlx1+bl)g(wlx2+bl)g(wlxQ+bl)Ql

2.ELM学习算法

由前文分析可知,ELM在训练之前可以随机产生 w 和 b , 只需确定隐含层神经元个数及隐含层和神经元的激活函数(无限可微) , 即可计算出β\betaβ 。具体地, ELM 的学习算法主要有以下几个步骤:

(1)确定隐含层神经元个数,随机设定输入层与隐含层间的连接权值 w 和隐含层神经元的偏置 b ;

(2) 选择一个无限可微的函数作为隐含层神经元的激活函数,进而计算隐含层输出矩 阵 H ;

(3)计算输出层权值:β=H+T′\beta = H^+T'β=H+T

值得一提的是,相关研究结果表明,在 ELM 中不仅许多非线性激活函数都可以使用(如 S 型函数、正弦函数和复合函数等),还可以使用不可微函数,甚至可以使用不连续的函数作为激 活函数。

3.分类问题

本文对乳腺肿瘤数据进行分类。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本 。

4.基于鲸鱼算法优化的ELM

鲸鱼算法的具体原理参考博客:https://blog.csdn.net/u011835903/article/details/107559167

由前文可知,ELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用鲸鱼算法对初始权值和阈值进行优化。适应度函数设计为训练集的错误率与测试集的错误率的和,以期望使训练得到的网络在测试集和训练集上均有较好的结果:
fitness=argmin(TrainErrorRate+TestErrorRate)。fitness = argmin(TrainErrorRate + TestErrorRate)。 fitness=argmin(TrainErrorRate+TestErrorRate)

5.测试结果

鲸鱼算法相关参数如下:

%训练数据相关尺寸
R = size(Pn_train,1);
S = size(Tn_train,1);
N = 20;%隐含层个数
%% 定义鲸鱼优化参数
pop=20; %种群数量
Max_iteration=50; %  设定最大迭代次数
dim = N*R + N*S;%维度,即权值与阈值的个数
lb = [-1.*ones(1,N*R),zeros(1,N*S)];%下边界
ub = [ones(1,N*R),ones(1,N*S)];%上边界

将经过鲸鱼优化后的SSA-ELM与基础ELM进行对比。

预测结果如下图

鲸鱼收敛曲线如下:

在这里插入图片描述

数据结果如下:

鲸鱼优化ELM结果展示:----------------
训练集正确率Accuracy = 93.6%(468/500)
测试集正确率Accuracy = 98.5507%(68/69)
病例总数:569 良性:357 恶性:212
训练集病例总数:500 良性:313 恶性:187
测试集病例总数:69 良性:44 恶性:25
良性乳腺肿瘤确诊:44 误诊:0 确诊率p1=100%
恶性乳腺肿瘤确诊:24 误诊:1 确诊率p2=96%
传统ELM结果展示:----------------
训练集正确率Accuracy = 90.2%(451/500)
测试集正确率Accuracy = 94.2029%(65/69)
病例总数:569 良性:357 恶性:212
训练集病例总数:500 良性:313 恶性:187
测试集病例总数:69 良性:44 恶性:25
良性乳腺肿瘤确诊:43 误诊:1 确诊率p1=97.7273%
恶性乳腺肿瘤确诊:22 误诊:3 确诊率p2=88%

从上述数据可以看出,鲸鱼-ELM训练得到的网络,无论是在测试集和训练集上的正确率均高于基础ELM训练得到的网络。鲸鱼-ELM具有较好的性能。

6.参考文献

书籍《MATLAB神经网络43个案例分析》

7.Matlab代码

相关文章:

基于鲸鱼算法的极限学习机(ELM)分类算法-附代码

基于鲸鱼算法的极限学习机(ELM)分类算法 文章目录基于鲸鱼算法的极限学习机(ELM)分类算法1.极限学习机原理概述2.ELM学习算法3.分类问题4.基于鲸鱼算法优化的ELM5.测试结果6.参考文献7.Matlab代码摘要:本文利用鲸鱼算法对极限学习机进行优化,并用于分类问…...

一文彻底读懂webpack常用配置

开发环境 const webpack require("webpack"); const path require(path) module.exports {// entry: {// a: ./src/0706/a.js,// c: ./src/0706/c.js,// },entry: "./src/0707/reactDemo.js",output: {filename: [name]_dist.js,path: path.resolve(__…...

大环境不好,找工作太难?三面阿里,幸好做足了准备,已拿offer

三面大概九十分钟,问的东西很全面,需要做充足准备,就是除了概念以外问的有点懵逼了(呜呜呜)。回来之后把这些题目做了一个分类并整理出答案(强迫症的我狂补知识)分为软件测试基础、Python自动化…...

C++ 手撸简易服务器(完善版本)

本文没有带反射部分内容&#xff0c;可以看我之前发的 Server.h #pragma once#include <string> #include <iostream> #include <thread> #include <unordered_map> using namespace std; #ifndef _SERVER_ #define _SERVER_#include <winsock.h&…...

【Python入门第三十四天】Python丨文件处理

文件处理是任何 Web 应用程序的重要组成部分。 Python 有几个用于创建、读取、更新和删除文件的函数。 文件处理 在 Python 中使用文件的关键函数是 open() 函数。 open() 函数有两个参数&#xff1a;文件名和模式。 对于刚学Python的小伙伴&#xff0c;我给大家准备了2023…...

【Linux】写一个基础的bash

头文件#include<stdio.h> #include<stdlib.h> #include<unistd.h> #include<sys/wait.h> #include<sys/stat.h> #include<string.h> #include<pwd.h> #include<dirent.h>分割输入的命令串字符串或参数内容为空则退出strtok( ,…...

图解如何一步步连接远程服务器——基于VScode

基于VScode连接远程服务器 安装Remote-SSH等插件 想要在vscode上连接远程服务器需要下载Remote-SSH系列插件&#xff1a; 直接在插件中搜索remote&#xff0c;即可找到&#xff0c;选择图片中的3个插件&#xff0c;点击install安装。 配置Remote-SSH 在这个步骤有多种操作…...

element - - - - - 你不知道的loading使用方式

求人不如求己 你不知道的loading使用方式1. 指令方式使用1.1 默认loading1.2 自定义loading1.3 整页加载2. 服务方式使用2.1 this.$loading的使用2.2 Loading.service的使用关于页面交互&#xff0c;最害怕的就是接口等待时间太长&#xff0c;用户体验不好。 而如何提高用户体…...

C++程序调用IsBadReadPtr或IsBadWritePtr引发内存访问违例问题的排查

目录 1、问题描述 2、VS中看不到有效的信息,尝试使用Windbg去分析 3、使用Windbg分析 4、最后...

IntelliJIDEA 常用快捷键

IntelliJIDEA 常用快捷键 Alt Enter 导入包&#xff0c;自动修正&#xff0c;自动创建变量名。 Ctrl Alt O 优化导入的类和包 Ctrl / 单行注释 (//) Ctrl Shift / 多行注释 (/* … */) 方法或类说明注释&#xff08;文档注释&#xff09; 在一个方法或类的开头&#xf…...

Python自动化抖音自动刷视频

环境准备 Python3.5以上Appium Server服务器Android SDK&#xff0c;需要用到adb服务需要依赖Appium-Python-Client组件库真机或者模拟器&#xff0c;推荐模拟器(真机一般安卓8版本以上了&#xff0c;appium对安卓8以上版本元素获取的兼容性不太好)JDK8环境 实现 确保adb服务…...

使用vite创建vue3工程

定义 什么是vite&#xff1f;-----新一代前端构建工具 优势 开发环境中&#xff0c;无需打包操作&#xff0c;可快速的冷启动---最牛的地方轻量快速的热重载&#xff08;HMR&#xff09;---一修改代码就局部刷新&#xff0c;webpack也具备&#xff0c;但vite更快真正的按需编…...

嵌入式学习笔记——STM32的时钟树

时钟树前言时钟树时钟分类时钟树框图LSI与LSEHSI、HSE与PLL系统时钟的产生举例AHB、APBx的时钟配置时钟树相关寄存器介绍1.时钟控制寄存器&#xff08;RCC_CR&#xff09;2.RCC PLL 配置寄存器 (RCC_PLLCFGR)3.RCC 时钟配置寄存器 (RCC_CFGR)4.RCC 时钟中断寄存器 (RCC_CIR)修改…...

Python学习(2)-NumPy矩阵与通用函数

文章首发于&#xff1a;My Blog 欢迎大佬们前来逛逛 1. NumPy矩阵 1.1 mat函数 matasmatrix asmatrix(data, dtypeNone):data&#xff1a;表示输入的数组或者字符串&#xff0c;使用‘&#xff0c;’分割列&#xff0c;使用‘&#xff1b;’分割行 创建两个普通的矩阵&…...

剑指 Offer II 035. 最小时间差

题目链接 剑指 Offer II 035. 最小时间差 mid 题目描述 给定一个 24小时制&#xff08;小时:分钟 "HH:MM"&#xff09;的时间列表&#xff0c;找出列表中任意两个时间的最小时间差并以分钟数表示。 示例 1&#xff1a; 输入&#xff1a;timePoints [“23:59”,“0…...

Spark SQL函数定义【博学谷学习记录】

1 如何使用窗口函数窗口函数格式:分析函数 over(partition by xxx order by xxx [asc|desc] [rows between xxx and xxx])学习的相关分析函数有那些? 第一类: row_number() rank() dense_rank() ntile()第二类: 和聚合函数组合使用 sum() avg() max() min() count()第三类: la…...

模拟实现STL容器之vector

文章目录前言1.大体思路2.具体代码实现1.类模板的创建2.构造函数1.无参构造2.拷贝构造 迭代器构造和给定n个val值构造以及析构函数3.空间扩容1.reserve2.resize4.操作符重载1.[ ]重载2.赋值运算符重载5.数据增加和删除1.尾插2.任意位置插入3.任意位置删除4.尾删6.一些其他接口3…...

ChatGPT-4.0 : 未来已来,你来不来

文章目录前言ChatGPT 3.5 介绍ChatGPT 4.0 介绍ChatGPT -4出逃计划&#xff01;我们应如何看待ChatGPT前言 好久没有更新过技术文章了&#xff0c;这个周末听说了一个非常火的技术ChatGPT 4.0&#xff0c;于是在闲暇之余我也进行了测试&#xff0c;今天这篇文章就给大家介绍一…...

Java反射(详细学习笔记)

Java反射 1. Java反射机制概述 Reflection&#xff08;反射&#xff09;是java被视为java动态语言的关键&#xff0c;反射机制允许程序在执行期间借助于Reflection API获取任何类的内部信息&#xff0c;并能直接操作任意对象的内部属性及方法。 Class c Class.forName(&quo…...

学习 Python 之 Pygame 开发魂斗罗(十二)

学习 Python 之 Pygame 开发魂斗罗&#xff08;十二&#xff09;继续编写魂斗罗1. 修改玩家扣减生命值2. 解决玩家下蹲子弹不会击中玩家而是直接让玩家死亡的问题3. 完善地图4. 增加产生敌人函数&#xff0c;解决一直产生敌人的问题5. 给玩家类增加计算玩家中心的方法继续编写魂…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...