当前位置: 首页 > news >正文

基于鲸鱼算法的极限学习机(ELM)分类算法-附代码

基于鲸鱼算法的极限学习机(ELM)分类算法

文章目录

  • 基于鲸鱼算法的极限学习机(ELM)分类算法
    • 1.极限学习机原理概述
    • 2.ELM学习算法
    • 3.分类问题
    • 4.基于鲸鱼算法优化的ELM
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:本文利用鲸鱼算法对极限学习机进行优化,并用于分类问题

1.极限学习机原理概述

典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量 。 为不失一般性,设输 入层与隐含层间的连接权值 w 为:
w=[w11w12...w1,nw21w22...w2n...wl1wl2...wln](1)w =\left[\begin{matrix}w_{11}&w_{12}&...&w_{1,n}\\ w_{21}&w_{22}&...&w_{2n}\\ ...\\ w_{l1}&w_{l2}&...&w_{ln} \end{matrix}\right]\tag{1} w=w11w21...wl1w12w22wl2.........w1,nw2nwln(1)
其中,wnw_nwn表示输入层第iii个神经元与隐含层第jjj个神经元间的连接权值。

设隐含层与输出层间的连接权值 , 为β\betaβ:
β=[β11β12...β1mβ21β22...β2m...βl1βl2...βlm](2)\beta =\left[\begin{matrix} \beta_{11}&\beta_{12}&...&\beta_{1m}\\ \beta_{21}&\beta_{22}&...&\beta_{2m}\\ ...\\ \beta_{l1}&\beta_{l2}&...&\beta_{lm} \end{matrix}\right] \tag{2} β=β11β21...βl1β12β22βl2.........β1mβ2mβlm(2)
其中,自βjk\beta_{jk}βjk表示隐含层第 j 个神经元与输出层第 k个神经元间的连接权值。

设隐含层神经元的阈值值 b 为:
b=[b1b2...bl](3)b =\left[\begin{matrix}b_1\\ b_2\\ ...\\ b_l \end{matrix}\right]\tag{3} b=b1b2...bl(3)
设具有 Q 个样本的训练集输入矩阵 X 和输出矩阵 Y 分别为
X=[x11x12...x1Qx21x22...x2Q...xn1xn2...xnQ](4)X =\left[\begin{matrix}x_{11}&x_{12}&...&x_{1Q}\\ x_{21}&x_{22}&...&x_{2Q}\\ ...\\ x_{n1}&x_{n2}&...&x_{nQ} \end{matrix}\right]\tag{4} X=x11x21...xn1x12x22xn2.........x1Qx2QxnQ(4)

KaTeX parse error: Undefined control sequence: \matrix at position 11: Y =\left[\̲m̲a̲t̲r̲i̲x̲{y_{11},y_{12},…

设隐含层神经元的激活函数为 g(x),则由图1 可得, 网络的输出 T 为:
T=[t1,..,tQ]m∗Q,tj=[t1j,...,tmj]T=[∑i=1tβi1g(wixj+bi)∑i=1tβi2g(wixj+bi)...∑i=1tβimg(wixj+bi)]m∗1,(j=1,2,...,Q)(6)T = [t_1,..,t_Q]_{m*Q},t_j = [t_{1j},...,t_{mj}]^T =\left[\begin{matrix}\sum_{i=1}^t\beta_{i1}g(w_ix_j + b_i)\\ \sum_{i=1}^t\beta_{i2}g(w_ix_j + b_i)\\ ...\\ \sum_{i=1}^t\beta_{im}g(w_ix_j + b_i) \end{matrix}\right]_{m*1},(j=1,2,...,Q)\tag{6} T=[t1,..,tQ]mQ,tj=[t1j,...,tmj]T=i=1tβi1g(wixj+bi)i=1tβi2g(wixj+bi)...i=1tβimg(wixj+bi)m1,(j=1,2,...,Q)(6)
式(6)可表示为:
Hβ=T’(7)H\beta = T’ \tag{7} Hβ=T(7)
其中, T’为矩阵 T 的转置; H 称为神经网络的隐含层输出矩阵 , 具体形式如下 :
H(w1,...,wi,b1,...,bl,x1,...,xQ)=[g(w1∗x1+b1)g(w2∗x1+b2)...g(wl∗x1+bl)g(w1∗x2+b1)g(w2∗x2+b2)...g(wl∗x2+bl)...g(w1∗xQ+b1)g(w2∗xQ+b2)...g(wl∗xQ+bl)]Q∗lH(w_1,...,w_i,b_1,...,b_l,x_1,...,x_Q) =\left[\begin{matrix} g(w_1*x_1 + b_1)&g(w_2*x_1 + b_2)&...&g(w_l*x_1 + b_l)\\ g(w_1*x_2 + b_1)&g(w_2*x_2 + b_2)&...&g(w_l*x_2 + b_l)\\ ...\\ g(w_1*x_Q + b_1)&g(w_2*x_Q + b_2)&...&g(w_l*x_Q + b_l) \end{matrix}\right]_{Q*l} H(w1,...,wi,b1,...,bl,x1,...,xQ)=g(w1x1+b1)g(w1x2+b1)...g(w1xQ+b1)g(w2x1+b2)g(w2x2+b2)g(w2xQ+b2).........g(wlx1+bl)g(wlx2+bl)g(wlxQ+bl)Ql

2.ELM学习算法

由前文分析可知,ELM在训练之前可以随机产生 w 和 b , 只需确定隐含层神经元个数及隐含层和神经元的激活函数(无限可微) , 即可计算出β\betaβ 。具体地, ELM 的学习算法主要有以下几个步骤:

(1)确定隐含层神经元个数,随机设定输入层与隐含层间的连接权值 w 和隐含层神经元的偏置 b ;

(2) 选择一个无限可微的函数作为隐含层神经元的激活函数,进而计算隐含层输出矩 阵 H ;

(3)计算输出层权值:β=H+T′\beta = H^+T'β=H+T

值得一提的是,相关研究结果表明,在 ELM 中不仅许多非线性激活函数都可以使用(如 S 型函数、正弦函数和复合函数等),还可以使用不可微函数,甚至可以使用不连续的函数作为激 活函数。

3.分类问题

本文对乳腺肿瘤数据进行分类。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本 。

4.基于鲸鱼算法优化的ELM

鲸鱼算法的具体原理参考博客:https://blog.csdn.net/u011835903/article/details/107559167

由前文可知,ELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用鲸鱼算法对初始权值和阈值进行优化。适应度函数设计为训练集的错误率与测试集的错误率的和,以期望使训练得到的网络在测试集和训练集上均有较好的结果:
fitness=argmin(TrainErrorRate+TestErrorRate)。fitness = argmin(TrainErrorRate + TestErrorRate)。 fitness=argmin(TrainErrorRate+TestErrorRate)

5.测试结果

鲸鱼算法相关参数如下:

%训练数据相关尺寸
R = size(Pn_train,1);
S = size(Tn_train,1);
N = 20;%隐含层个数
%% 定义鲸鱼优化参数
pop=20; %种群数量
Max_iteration=50; %  设定最大迭代次数
dim = N*R + N*S;%维度,即权值与阈值的个数
lb = [-1.*ones(1,N*R),zeros(1,N*S)];%下边界
ub = [ones(1,N*R),ones(1,N*S)];%上边界

将经过鲸鱼优化后的SSA-ELM与基础ELM进行对比。

预测结果如下图

鲸鱼收敛曲线如下:

在这里插入图片描述

数据结果如下:

鲸鱼优化ELM结果展示:----------------
训练集正确率Accuracy = 93.6%(468/500)
测试集正确率Accuracy = 98.5507%(68/69)
病例总数:569 良性:357 恶性:212
训练集病例总数:500 良性:313 恶性:187
测试集病例总数:69 良性:44 恶性:25
良性乳腺肿瘤确诊:44 误诊:0 确诊率p1=100%
恶性乳腺肿瘤确诊:24 误诊:1 确诊率p2=96%
传统ELM结果展示:----------------
训练集正确率Accuracy = 90.2%(451/500)
测试集正确率Accuracy = 94.2029%(65/69)
病例总数:569 良性:357 恶性:212
训练集病例总数:500 良性:313 恶性:187
测试集病例总数:69 良性:44 恶性:25
良性乳腺肿瘤确诊:43 误诊:1 确诊率p1=97.7273%
恶性乳腺肿瘤确诊:22 误诊:3 确诊率p2=88%

从上述数据可以看出,鲸鱼-ELM训练得到的网络,无论是在测试集和训练集上的正确率均高于基础ELM训练得到的网络。鲸鱼-ELM具有较好的性能。

6.参考文献

书籍《MATLAB神经网络43个案例分析》

7.Matlab代码

相关文章:

基于鲸鱼算法的极限学习机(ELM)分类算法-附代码

基于鲸鱼算法的极限学习机(ELM)分类算法 文章目录基于鲸鱼算法的极限学习机(ELM)分类算法1.极限学习机原理概述2.ELM学习算法3.分类问题4.基于鲸鱼算法优化的ELM5.测试结果6.参考文献7.Matlab代码摘要:本文利用鲸鱼算法对极限学习机进行优化,并用于分类问…...

一文彻底读懂webpack常用配置

开发环境 const webpack require("webpack"); const path require(path) module.exports {// entry: {// a: ./src/0706/a.js,// c: ./src/0706/c.js,// },entry: "./src/0707/reactDemo.js",output: {filename: [name]_dist.js,path: path.resolve(__…...

大环境不好,找工作太难?三面阿里,幸好做足了准备,已拿offer

三面大概九十分钟,问的东西很全面,需要做充足准备,就是除了概念以外问的有点懵逼了(呜呜呜)。回来之后把这些题目做了一个分类并整理出答案(强迫症的我狂补知识)分为软件测试基础、Python自动化…...

C++ 手撸简易服务器(完善版本)

本文没有带反射部分内容&#xff0c;可以看我之前发的 Server.h #pragma once#include <string> #include <iostream> #include <thread> #include <unordered_map> using namespace std; #ifndef _SERVER_ #define _SERVER_#include <winsock.h&…...

【Python入门第三十四天】Python丨文件处理

文件处理是任何 Web 应用程序的重要组成部分。 Python 有几个用于创建、读取、更新和删除文件的函数。 文件处理 在 Python 中使用文件的关键函数是 open() 函数。 open() 函数有两个参数&#xff1a;文件名和模式。 对于刚学Python的小伙伴&#xff0c;我给大家准备了2023…...

【Linux】写一个基础的bash

头文件#include<stdio.h> #include<stdlib.h> #include<unistd.h> #include<sys/wait.h> #include<sys/stat.h> #include<string.h> #include<pwd.h> #include<dirent.h>分割输入的命令串字符串或参数内容为空则退出strtok( ,…...

图解如何一步步连接远程服务器——基于VScode

基于VScode连接远程服务器 安装Remote-SSH等插件 想要在vscode上连接远程服务器需要下载Remote-SSH系列插件&#xff1a; 直接在插件中搜索remote&#xff0c;即可找到&#xff0c;选择图片中的3个插件&#xff0c;点击install安装。 配置Remote-SSH 在这个步骤有多种操作…...

element - - - - - 你不知道的loading使用方式

求人不如求己 你不知道的loading使用方式1. 指令方式使用1.1 默认loading1.2 自定义loading1.3 整页加载2. 服务方式使用2.1 this.$loading的使用2.2 Loading.service的使用关于页面交互&#xff0c;最害怕的就是接口等待时间太长&#xff0c;用户体验不好。 而如何提高用户体…...

C++程序调用IsBadReadPtr或IsBadWritePtr引发内存访问违例问题的排查

目录 1、问题描述 2、VS中看不到有效的信息,尝试使用Windbg去分析 3、使用Windbg分析 4、最后...

IntelliJIDEA 常用快捷键

IntelliJIDEA 常用快捷键 Alt Enter 导入包&#xff0c;自动修正&#xff0c;自动创建变量名。 Ctrl Alt O 优化导入的类和包 Ctrl / 单行注释 (//) Ctrl Shift / 多行注释 (/* … */) 方法或类说明注释&#xff08;文档注释&#xff09; 在一个方法或类的开头&#xf…...

Python自动化抖音自动刷视频

环境准备 Python3.5以上Appium Server服务器Android SDK&#xff0c;需要用到adb服务需要依赖Appium-Python-Client组件库真机或者模拟器&#xff0c;推荐模拟器(真机一般安卓8版本以上了&#xff0c;appium对安卓8以上版本元素获取的兼容性不太好)JDK8环境 实现 确保adb服务…...

使用vite创建vue3工程

定义 什么是vite&#xff1f;-----新一代前端构建工具 优势 开发环境中&#xff0c;无需打包操作&#xff0c;可快速的冷启动---最牛的地方轻量快速的热重载&#xff08;HMR&#xff09;---一修改代码就局部刷新&#xff0c;webpack也具备&#xff0c;但vite更快真正的按需编…...

嵌入式学习笔记——STM32的时钟树

时钟树前言时钟树时钟分类时钟树框图LSI与LSEHSI、HSE与PLL系统时钟的产生举例AHB、APBx的时钟配置时钟树相关寄存器介绍1.时钟控制寄存器&#xff08;RCC_CR&#xff09;2.RCC PLL 配置寄存器 (RCC_PLLCFGR)3.RCC 时钟配置寄存器 (RCC_CFGR)4.RCC 时钟中断寄存器 (RCC_CIR)修改…...

Python学习(2)-NumPy矩阵与通用函数

文章首发于&#xff1a;My Blog 欢迎大佬们前来逛逛 1. NumPy矩阵 1.1 mat函数 matasmatrix asmatrix(data, dtypeNone):data&#xff1a;表示输入的数组或者字符串&#xff0c;使用‘&#xff0c;’分割列&#xff0c;使用‘&#xff1b;’分割行 创建两个普通的矩阵&…...

剑指 Offer II 035. 最小时间差

题目链接 剑指 Offer II 035. 最小时间差 mid 题目描述 给定一个 24小时制&#xff08;小时:分钟 "HH:MM"&#xff09;的时间列表&#xff0c;找出列表中任意两个时间的最小时间差并以分钟数表示。 示例 1&#xff1a; 输入&#xff1a;timePoints [“23:59”,“0…...

Spark SQL函数定义【博学谷学习记录】

1 如何使用窗口函数窗口函数格式:分析函数 over(partition by xxx order by xxx [asc|desc] [rows between xxx and xxx])学习的相关分析函数有那些? 第一类: row_number() rank() dense_rank() ntile()第二类: 和聚合函数组合使用 sum() avg() max() min() count()第三类: la…...

模拟实现STL容器之vector

文章目录前言1.大体思路2.具体代码实现1.类模板的创建2.构造函数1.无参构造2.拷贝构造 迭代器构造和给定n个val值构造以及析构函数3.空间扩容1.reserve2.resize4.操作符重载1.[ ]重载2.赋值运算符重载5.数据增加和删除1.尾插2.任意位置插入3.任意位置删除4.尾删6.一些其他接口3…...

ChatGPT-4.0 : 未来已来,你来不来

文章目录前言ChatGPT 3.5 介绍ChatGPT 4.0 介绍ChatGPT -4出逃计划&#xff01;我们应如何看待ChatGPT前言 好久没有更新过技术文章了&#xff0c;这个周末听说了一个非常火的技术ChatGPT 4.0&#xff0c;于是在闲暇之余我也进行了测试&#xff0c;今天这篇文章就给大家介绍一…...

Java反射(详细学习笔记)

Java反射 1. Java反射机制概述 Reflection&#xff08;反射&#xff09;是java被视为java动态语言的关键&#xff0c;反射机制允许程序在执行期间借助于Reflection API获取任何类的内部信息&#xff0c;并能直接操作任意对象的内部属性及方法。 Class c Class.forName(&quo…...

学习 Python 之 Pygame 开发魂斗罗(十二)

学习 Python 之 Pygame 开发魂斗罗&#xff08;十二&#xff09;继续编写魂斗罗1. 修改玩家扣减生命值2. 解决玩家下蹲子弹不会击中玩家而是直接让玩家死亡的问题3. 完善地图4. 增加产生敌人函数&#xff0c;解决一直产生敌人的问题5. 给玩家类增加计算玩家中心的方法继续编写魂…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

Selenium常用函数介绍

目录 一&#xff0c;元素定位 1.1 cssSeector 1.2 xpath 二&#xff0c;操作测试对象 三&#xff0c;窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四&#xff0c;弹窗 五&#xff0c;等待 六&#xff0c;导航 七&#xff0c;文件上传 …...

解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist

现象&#xff1a; android studio报错&#xff1a; [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决&#xff1a; 不要动CMakeLists.…...

2025年- H71-Lc179--39.组合总和(回溯,组合)--Java版

1.题目描述 2.思路 当前的元素可以重复使用。 &#xff08;1&#xff09;确定回溯算法函数的参数和返回值&#xff08;一般是void类型&#xff09; &#xff08;2&#xff09;因为是用递归实现的&#xff0c;所以我们要确定终止条件 &#xff08;3&#xff09;单层搜索逻辑 二…...

表单设计器拖拽对象时添加属性

背景&#xff1a;因为项目需要。自写设计器。遇到的坑在此记录 使用的拖拽组件时vuedraggable。下面放上局部示例截图。 坑1。draggable标签在拖拽时可以获取到被拖拽的对象属性定义 要使用 :clone, 而不是clone。我想应该是因为draggable标签比较特。另外在使用**:clone时要将…...