基于 YOLO V10 Fine-Tuning 训练自定义的目标检测模型
一、YOLO V10
在本专栏的前面几篇文章中,我们使用 ultralytics
公司开源发布的 YOLO-V8
模型,分别 Fine-Tuning
实验了 目标检测、关键点检测、分类 任务,实验后发现效果都非常的不错,但它已经不是最强的了。最新的 YOLO-V10
已经完全超越之前的所有版本, YOLO-V10
由清华大学提供,采用无 NMS
训练和效率-精度驱动架构,提供目前最先进的性能和延迟。
从上图中的对比效果可以明显看出, YOLO-V10
不仅在速度上得到了极大的提升,精度同样也得到了明显的提升。主要得益于其 无 NMS
训练的重大变化。
在模型上 V10
和之前的版本类似,包括不同大小的模型,从小到大包括:
YOLOv10-N
:用于资源极其有限环境的纳米版本。YOLOv10-S
:兼顾速度和精度的小型版本。YOLOv10-M
:通用中型版本。YOLOv10-B
:平衡型,宽度增加,精度更高。YOLOv10-L
:大型版本,精度更高,但计算资源增加。YOLOv10-X
:超大型版本可实现最高精度和性能。
模型的比较如下:
更多的介绍可以参考官方的文档:
https://docs.ultralytics.com/de/models/yolov10/#model-variants
本文借助 ultralytics
框架对 YOLO V10
迁移训练自定义的目标检测模型,本次实验训练一个人脸检测模型,包括数据标注、数据拆分、训练、测试等过程。
实验采用 ultralytics
框架,可以帮助开发人员高效完成数据训练和验证任务,由于 ultralytics
默认采用的为 PyTorch
框架,因此实验前请安装好 cuda
和 torch
环境,如果没有 GPU
环境,由于YOLO V10
已经足够轻量级,使用CPU
也是可以训练。
安装 ultralytics
库:
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
如果已经安装,需要更新到最新版本:
pip install --upgrade ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
ultralytics
使用文档:
https://docs.ultralytics.com/zh/quickstart/#use-ultralytics-with-python
测试 YOLO V10
的效果:
测试图片:
这里使用 yolov10n
模型,如果模型不存在会自动下载
from ultralytics import YOLO
# Load a model
model = YOLO('yolov10n.pt')results = model.predict('./img/1.png')
results[0].show()
二、准备训练数据及标注
图像数据可以从网上找一些或者自己拍摄,我这里准备了一些 人 的图片:
这里可以准备两个目录,data/images
和 data/labels
,其中 labels
存放标注后的文件,将收集到的图像放在 images
目录下:
下面使用 labelimg
工具进行标注,如果没有安装,使用下面命令安装:
pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
然后在控制台输入:labelimg
打开可视化工具:
注意:数据集格式默认是 VOC
格式的,要选择为 YOLO
,我这里的人脸标签为 face
,这个后面需要使用到。
标注完成后,可以在 /data/labels
下看到标注后的文件:
三、数据拆分
这里拆分为 90%
的训练集,10%
的验证集,这部分和之前训练 YOLO V8
时一致,拆分脚本如下,
import os
import shutil
from tqdm import tqdm# 图片地址
image_dir = "data/images/"
# 标准文件地址
label_dir = "data/labels/"
# 训练集的比例
training_ratio = 0.9
# 拆分后数据的位置
train_dir = "train_data"def split_data():list = os.listdir(image_dir)all = len(list)train_count = int(all * training_ratio)train_images = list[0:train_count]val_images = list[train_count:]# 训练集目录os.makedirs(os.path.join(train_dir, "images/train"), exist_ok=True)os.makedirs(os.path.join(train_dir, "labels/train"), exist_ok=True)# 验证集目录os.makedirs(os.path.join(train_dir, "images/val"), exist_ok=True)os.makedirs(os.path.join(train_dir, "labels/val"), exist_ok=True)# 训练集with open(os.path.join(train_dir, "train.txt"), "w") as file:file.write("\n".join([train_dir + "images/train/" + image_file for image_file in train_images]))print("save train.txt success!")# 拷贝数据for item in tqdm(train_images):label_file = item.replace(".jpg", ".txt")shutil.copy(os.path.join(image_dir, item), os.path.join(train_dir, "images/train/"))shutil.copy(os.path.join(label_dir, label_file), os.path.join(train_dir, "labels/train/"))# 验证集with open(os.path.join(train_dir, "val.txt"), "w") as file:file.write("\n".join([train_dir + "images/val/" + image_file for image_file in val_images]))print("save val.txt success!")# 拷贝数据for item in tqdm(val_images):label_file = item.replace(".jpg", ".txt")shutil.copy(os.path.join(image_dir, item), os.path.join(train_dir, "images/val/"))shutil.copy(os.path.join(label_dir, label_file), os.path.join(train_dir, "labels/val/"))if __name__ == '__main__':split_data()
可以在 train_data
中看到拆分后的数据集格式:
四、训练
使用 ultralytics
框架训练非常简单,仅需三行代码即可完成训练,不过在训练前需要编写 YAML
配置信息,主要标记数据集的位置。
创建 face.yaml
文件,写入下面内容:
path: D:/pyProject/yolov10/train_data # 数据集的根目录, 建议使用绝对路径
train: images/train # 训练集图像目录
val: images/val # 验证集图像目录
test: # test images (optional)# 分类
names:0: face
注意分类中的 face
就是上面标注时的标签名。
开始训练:
from ultralytics import YOLO# 加载模型
model = YOLO('yolov10n.pt')# 训练
model.train(data='face.yaml', # 训练配置文件epochs=100, # 训练的周期imgsz=640, # 图像的大小device=[0], # 设备,如果是 cpu 则是 device='cpu'workers=0,lr0=0.0001, # 学习率batch=8, # 批次大小amp=False # 是否启用混合精度训练
)
运行后可以看到打印的网络结构:
训练中:
训练结束后可以在 runs
目录下面看到训练的结果:
其中 weights
下面的就是训练后保存的模型,这里可以先看下训练时 loss
的变化图:
五、模型测试
在 runs\detect\train\weights
下可以看到 best.pt
和 last.pt
两个模型,表示最佳和最终模型,下面使用 best.pt
模型进行测试
from ultralytics import YOLO
from matplotlib import pyplot as plt
import os
plt.rcParams['font.sans-serif'] = ['SimHei']# 测试图片地址
base_path = "test"
# 加载模型
model = YOLO('runs/detect/train/weights/best.pt')
for img_name in os.listdir(base_path):img_path = os.path.join(base_path, img_name)image = plt.imread(img_path)# 预测results = model.predict(image, device='cpu')boxes = results[0].boxes.xyxyconfs = results[0].boxes.confax = plt.gca()for index, boxe in enumerate(boxes):x1, y1, x2, y2 = boxe[0], boxe[1], boxe[2], boxe[3]score = confs[index].item()ax.add_patch(plt.Rectangle((x1, y1), (x2 - x1), (y2 - y1), linewidth=2, fill=False, color='red'))plt.text(x=x1, y=y1-10, s="{:.2f}".format(score), fontsize=15, color='white',bbox=dict(facecolor='black', alpha=0.5))plt.imshow(image)plt.show()
相关文章:

基于 YOLO V10 Fine-Tuning 训练自定义的目标检测模型
一、YOLO V10 在本专栏的前面几篇文章中,我们使用 ultralytics 公司开源发布的 YOLO-V8 模型,分别 Fine-Tuning 实验了 目标检测、关键点检测、分类 任务,实验后发现效果都非常的不错,但它已经不是最强的了。最新的 YOLO-V10 已经…...
Java学习2
1 如果要使用Long类型的变量,在数据值的后面加上L为后缀(可以是大写也可以是小写),例如 Long i9999999L; 2 如果要使用float类型的变量,在数据值的后面加上F为后缀(可以是大写也可以是小写)&a…...
CSS、less、 Sass、
1 CSS 1.1 css中.a.b 与 .a .b(中间有空格)的区别 区别: .a.b是获取同时含有a和b的元素.a .b(中间有空格),是获取.a元素下的所有.b元素<!DOCTYPE html> <html lang="en"> <head><meta charset="UTF-8"><meta name=&quo…...

北京大学:利用好不确定性,8B小模型也能超越GPT-4
大模型有一个显著的特点,那就是不确定性——对于特定输入,相同的LLM在不同解码配置下可能生成显著不同的输出。 比如问一问chatgpt“今天开心吗?”,可以得到两种不同的回答。 常用的解码策略有两种,一个是贪婪解码&am…...
哪些云服务商已通过了等保2.0合规性评估?
已通过等保2.0合规性评估的云服务商 根据最新的搜索结果,以下是已通过等保2.0合规性评估的云服务商: 阿里云:阿里云的“电子政务云平台系统”是全国首个通过等保2.0国标测评的云平台,显示了其在云计算领域的安全合规能力。华为云…...

PHP在线加密系统源码
历时半年,它再一次迎来更新[飘过] 刚刚发的那个有点问题,重新修了一下 本次更新内容有点多 1. 更新加密算法(这应该是最后一次更新加密算法了,以后主要更新都在框架功能上面了) 2. 适配php56-php74 3. 取消批量加…...

OpenCV学习笔记 比较基于RANSAC、最小二乘算法的拟合
一、RANSAC算法 https://skydance.blog.csdn.net/article/details/134887458https://skydance.blog.csdn.net/article/details/134887458 二、最小二乘算法 https://skydance.blog.csdn.net/article/details/115413982...

前端JS特效第53集:带声音的烟花模拟绽放特效插件
带声音的烟花模拟绽放特效插件,先来看看效果: 部分核心的代码如下(全部代码在文章末尾): <!DOCTYPE html> <html lang"en" > <head><meta charset"UTF-8"><title>Firework Simulator v2&…...

好展位,抢先订!2025浙江(玉环)机械展
2025第18届浙江(玉环)机械工业展览会 时间地点:2025年4月25-28日 玉环会展中心 近年来,随着玉环工业经济的蓬勃发展,汽摩配件、阀门水暖五金产业、铜加工、眼镜配件、金属加工生产等行业,如同贪婪的巨人&…...

Java面试八股之Spring如何解决循环依赖
Spring如何解决循环依赖 在Spring框架中,循环依赖问题通常发生在两个或多个Bean相互依赖的情况下。Spring为了解决循环依赖问题,采用了不同的策略,这些策略主要取决于Bean的作用域以及依赖注入的方式。下面是一些关键点: 单例Be…...
如何为 SQL Server 设置强密码以增强安全性?
为 SQL Server 设置强密码是增强数据库安全性的重要步骤。以下是一些关键步骤和最佳实践: 1. 使用复杂密码 长度:密码应至少为 12 个字符。字符类型:包括大写字母、小写字母、数字和特殊字符(如 !#$%^&*())。避免…...

C语言实现三子棋
通过一段时间的学习,我们已经能够较为熟练地使用分支语句,循环语句,创建函数,创建数组,创建随机数等。之前我们做过一个扫雷游戏,今天让我们再尝试创作一个三子棋游戏吧~ 一、三子棋游戏的思路 三子棋的游…...

昇思25天学习打卡营第XX天|RNN实现情感分类
希望代码能维持开源维护状态hhh,要是再文件整理下就更好了,现在好乱,不能好fork tutorials/application/source_zh_cn/nlp/sentiment_analysis.ipynb MindSpore/docs - Gitee.com...

linux深度学习环境配置(cuda,pytorch)
显卡驱动 首先查看linux服务器是否存在显卡驱动,可以输入以下命令 nvidia-smi如果没有直接显示下面的画面 则进行下面的步骤: ubuntu-drivers devices sudo ubuntu-drivers autoinstall上述步骤的意思是直接在线安装 然后重启linux服务器 reboot发现…...
SpringBoot教程(十九) | SpringBoot集成Slf4j日志门面
SpringBoot教程(十九) | SpringBoot集成Slf4j日志门面 一、概述二、前言三、引入依赖 (不需要额外引入了)四、自定义Logback的配置文件(一般都需配置)情况一:不配置任何关于logback的配置文件情况二:配置关…...

科普文:深入理解ElasticSearch体系结构
概叙 Elasticsearch是什么? Elasticsearch(简称ES)是一个分布式、可扩展、实时的搜索与数据分析引擎。ES不仅仅只是全文搜索,还支持结构化搜索、数据分析、复杂的语言处理、地理位置和对象间关联关系等。 官网地址:…...
极限学习机(ELM)预测模型及其Python和MATLAB实现
### 一、背景 在机器学习和数据挖掘领域,预测模型旨在从过往数据中学习规律,以便对未知数据进行预测。随着数据量的激增和计算能力的提升,各种算法不断涌现。其中,极限学习机(Extreme Learning Machine, ELM࿰…...

基于Python的哔哩哔哩国产动画排行数据分析系统
需要本项目的可以私信博主,提供完整的部署、讲解、文档、代码服务 随着经济社会的快速发展,中国影视产业迎来了蓬勃发展的契机,其中动漫产业发展尤为突出。中国拥有古老而又璀璨的文明,仅仅从中提取一部分就足以催生出大量精彩的…...

Java导出Excel给每一列设置不同样式示例
Excel导出这里不讲,方法很多,原生的POI可以参照 Java原生POI实现的Excel导入导出(简单易懂) 这里只说怎么给Excel每一列设置不同的样式,比如下面这样的 直接上代码 Overridepublic void exportTemplate(HttpServletRe…...

2.1、matlab绘图汇总(图例、标题、坐标轴、线条格式、颜色和散点格式设置)
1、前言 在 MATLAB 中进行绘图是一种非常常见且实用的操作,可以用来可视化数据、结果展示、分析趋势等。通过 MATLAB 的绘图功能,用户可以创建各种类型的图形,包括线图、散点图、柱状图、曲线图等,以及三维图形、动画等复杂的可视化效果。 在绘图之前,通常需要先准备好要…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...

如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...

QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...

ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...

AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...