基于 YOLO V10 Fine-Tuning 训练自定义的目标检测模型
一、YOLO V10
在本专栏的前面几篇文章中,我们使用 ultralytics 公司开源发布的 YOLO-V8 模型,分别 Fine-Tuning 实验了 目标检测、关键点检测、分类 任务,实验后发现效果都非常的不错,但它已经不是最强的了。最新的 YOLO-V10 已经完全超越之前的所有版本, YOLO-V10 由清华大学提供,采用无 NMS 训练和效率-精度驱动架构,提供目前最先进的性能和延迟。

从上图中的对比效果可以明显看出, YOLO-V10 不仅在速度上得到了极大的提升,精度同样也得到了明显的提升。主要得益于其 无 NMS 训练的重大变化。
在模型上 V10 和之前的版本类似,包括不同大小的模型,从小到大包括:
YOLOv10-N:用于资源极其有限环境的纳米版本。YOLOv10-S:兼顾速度和精度的小型版本。YOLOv10-M:通用中型版本。YOLOv10-B:平衡型,宽度增加,精度更高。YOLOv10-L:大型版本,精度更高,但计算资源增加。YOLOv10-X:超大型版本可实现最高精度和性能。
模型的比较如下:

更多的介绍可以参考官方的文档:
https://docs.ultralytics.com/de/models/yolov10/#model-variants
本文借助 ultralytics 框架对 YOLO V10 迁移训练自定义的目标检测模型,本次实验训练一个人脸检测模型,包括数据标注、数据拆分、训练、测试等过程。
实验采用 ultralytics 框架,可以帮助开发人员高效完成数据训练和验证任务,由于 ultralytics 默认采用的为 PyTorch 框架,因此实验前请安装好 cuda 和 torch 环境,如果没有 GPU 环境,由于YOLO V10 已经足够轻量级,使用CPU 也是可以训练。
安装 ultralytics 库:
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
如果已经安装,需要更新到最新版本:
pip install --upgrade ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
ultralytics 使用文档:
https://docs.ultralytics.com/zh/quickstart/#use-ultralytics-with-python
测试 YOLO V10 的效果:
测试图片:

这里使用 yolov10n 模型,如果模型不存在会自动下载
from ultralytics import YOLO
# Load a model
model = YOLO('yolov10n.pt')results = model.predict('./img/1.png')
results[0].show()


二、准备训练数据及标注
图像数据可以从网上找一些或者自己拍摄,我这里准备了一些 人 的图片:

这里可以准备两个目录,data/images 和 data/labels,其中 labels 存放标注后的文件,将收集到的图像放在 images 目录下:

下面使用 labelimg 工具进行标注,如果没有安装,使用下面命令安装:
pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
然后在控制台输入:labelimg 打开可视化工具:

注意:数据集格式默认是 VOC 格式的,要选择为 YOLO ,我这里的人脸标签为 face ,这个后面需要使用到。
标注完成后,可以在 /data/labels 下看到标注后的文件:

三、数据拆分
这里拆分为 90% 的训练集,10% 的验证集,这部分和之前训练 YOLO V8 时一致,拆分脚本如下,
import os
import shutil
from tqdm import tqdm# 图片地址
image_dir = "data/images/"
# 标准文件地址
label_dir = "data/labels/"
# 训练集的比例
training_ratio = 0.9
# 拆分后数据的位置
train_dir = "train_data"def split_data():list = os.listdir(image_dir)all = len(list)train_count = int(all * training_ratio)train_images = list[0:train_count]val_images = list[train_count:]# 训练集目录os.makedirs(os.path.join(train_dir, "images/train"), exist_ok=True)os.makedirs(os.path.join(train_dir, "labels/train"), exist_ok=True)# 验证集目录os.makedirs(os.path.join(train_dir, "images/val"), exist_ok=True)os.makedirs(os.path.join(train_dir, "labels/val"), exist_ok=True)# 训练集with open(os.path.join(train_dir, "train.txt"), "w") as file:file.write("\n".join([train_dir + "images/train/" + image_file for image_file in train_images]))print("save train.txt success!")# 拷贝数据for item in tqdm(train_images):label_file = item.replace(".jpg", ".txt")shutil.copy(os.path.join(image_dir, item), os.path.join(train_dir, "images/train/"))shutil.copy(os.path.join(label_dir, label_file), os.path.join(train_dir, "labels/train/"))# 验证集with open(os.path.join(train_dir, "val.txt"), "w") as file:file.write("\n".join([train_dir + "images/val/" + image_file for image_file in val_images]))print("save val.txt success!")# 拷贝数据for item in tqdm(val_images):label_file = item.replace(".jpg", ".txt")shutil.copy(os.path.join(image_dir, item), os.path.join(train_dir, "images/val/"))shutil.copy(os.path.join(label_dir, label_file), os.path.join(train_dir, "labels/val/"))if __name__ == '__main__':split_data()

可以在 train_data 中看到拆分后的数据集格式:

四、训练
使用 ultralytics 框架训练非常简单,仅需三行代码即可完成训练,不过在训练前需要编写 YAML 配置信息,主要标记数据集的位置。
创建 face.yaml 文件,写入下面内容:
path: D:/pyProject/yolov10/train_data # 数据集的根目录, 建议使用绝对路径
train: images/train # 训练集图像目录
val: images/val # 验证集图像目录
test: # test images (optional)# 分类
names:0: face
注意分类中的 face 就是上面标注时的标签名。
开始训练:
from ultralytics import YOLO# 加载模型
model = YOLO('yolov10n.pt')# 训练
model.train(data='face.yaml', # 训练配置文件epochs=100, # 训练的周期imgsz=640, # 图像的大小device=[0], # 设备,如果是 cpu 则是 device='cpu'workers=0,lr0=0.0001, # 学习率batch=8, # 批次大小amp=False # 是否启用混合精度训练
)
运行后可以看到打印的网络结构:

训练中:

训练结束后可以在 runs 目录下面看到训练的结果:

其中 weights 下面的就是训练后保存的模型,这里可以先看下训练时 loss 的变化图:

五、模型测试
在 runs\detect\train\weights 下可以看到 best.pt 和 last.pt 两个模型,表示最佳和最终模型,下面使用 best.pt 模型进行测试
from ultralytics import YOLO
from matplotlib import pyplot as plt
import os
plt.rcParams['font.sans-serif'] = ['SimHei']# 测试图片地址
base_path = "test"
# 加载模型
model = YOLO('runs/detect/train/weights/best.pt')
for img_name in os.listdir(base_path):img_path = os.path.join(base_path, img_name)image = plt.imread(img_path)# 预测results = model.predict(image, device='cpu')boxes = results[0].boxes.xyxyconfs = results[0].boxes.confax = plt.gca()for index, boxe in enumerate(boxes):x1, y1, x2, y2 = boxe[0], boxe[1], boxe[2], boxe[3]score = confs[index].item()ax.add_patch(plt.Rectangle((x1, y1), (x2 - x1), (y2 - y1), linewidth=2, fill=False, color='red'))plt.text(x=x1, y=y1-10, s="{:.2f}".format(score), fontsize=15, color='white',bbox=dict(facecolor='black', alpha=0.5))plt.imshow(image)plt.show()



相关文章:
基于 YOLO V10 Fine-Tuning 训练自定义的目标检测模型
一、YOLO V10 在本专栏的前面几篇文章中,我们使用 ultralytics 公司开源发布的 YOLO-V8 模型,分别 Fine-Tuning 实验了 目标检测、关键点检测、分类 任务,实验后发现效果都非常的不错,但它已经不是最强的了。最新的 YOLO-V10 已经…...
Java学习2
1 如果要使用Long类型的变量,在数据值的后面加上L为后缀(可以是大写也可以是小写),例如 Long i9999999L; 2 如果要使用float类型的变量,在数据值的后面加上F为后缀(可以是大写也可以是小写)&a…...
CSS、less、 Sass、
1 CSS 1.1 css中.a.b 与 .a .b(中间有空格)的区别 区别: .a.b是获取同时含有a和b的元素.a .b(中间有空格),是获取.a元素下的所有.b元素<!DOCTYPE html> <html lang="en"> <head><meta charset="UTF-8"><meta name=&quo…...
北京大学:利用好不确定性,8B小模型也能超越GPT-4
大模型有一个显著的特点,那就是不确定性——对于特定输入,相同的LLM在不同解码配置下可能生成显著不同的输出。 比如问一问chatgpt“今天开心吗?”,可以得到两种不同的回答。 常用的解码策略有两种,一个是贪婪解码&am…...
哪些云服务商已通过了等保2.0合规性评估?
已通过等保2.0合规性评估的云服务商 根据最新的搜索结果,以下是已通过等保2.0合规性评估的云服务商: 阿里云:阿里云的“电子政务云平台系统”是全国首个通过等保2.0国标测评的云平台,显示了其在云计算领域的安全合规能力。华为云…...
PHP在线加密系统源码
历时半年,它再一次迎来更新[飘过] 刚刚发的那个有点问题,重新修了一下 本次更新内容有点多 1. 更新加密算法(这应该是最后一次更新加密算法了,以后主要更新都在框架功能上面了) 2. 适配php56-php74 3. 取消批量加…...
OpenCV学习笔记 比较基于RANSAC、最小二乘算法的拟合
一、RANSAC算法 https://skydance.blog.csdn.net/article/details/134887458https://skydance.blog.csdn.net/article/details/134887458 二、最小二乘算法 https://skydance.blog.csdn.net/article/details/115413982...
前端JS特效第53集:带声音的烟花模拟绽放特效插件
带声音的烟花模拟绽放特效插件,先来看看效果: 部分核心的代码如下(全部代码在文章末尾): <!DOCTYPE html> <html lang"en" > <head><meta charset"UTF-8"><title>Firework Simulator v2&…...
好展位,抢先订!2025浙江(玉环)机械展
2025第18届浙江(玉环)机械工业展览会 时间地点:2025年4月25-28日 玉环会展中心 近年来,随着玉环工业经济的蓬勃发展,汽摩配件、阀门水暖五金产业、铜加工、眼镜配件、金属加工生产等行业,如同贪婪的巨人&…...
Java面试八股之Spring如何解决循环依赖
Spring如何解决循环依赖 在Spring框架中,循环依赖问题通常发生在两个或多个Bean相互依赖的情况下。Spring为了解决循环依赖问题,采用了不同的策略,这些策略主要取决于Bean的作用域以及依赖注入的方式。下面是一些关键点: 单例Be…...
如何为 SQL Server 设置强密码以增强安全性?
为 SQL Server 设置强密码是增强数据库安全性的重要步骤。以下是一些关键步骤和最佳实践: 1. 使用复杂密码 长度:密码应至少为 12 个字符。字符类型:包括大写字母、小写字母、数字和特殊字符(如 !#$%^&*())。避免…...
C语言实现三子棋
通过一段时间的学习,我们已经能够较为熟练地使用分支语句,循环语句,创建函数,创建数组,创建随机数等。之前我们做过一个扫雷游戏,今天让我们再尝试创作一个三子棋游戏吧~ 一、三子棋游戏的思路 三子棋的游…...
昇思25天学习打卡营第XX天|RNN实现情感分类
希望代码能维持开源维护状态hhh,要是再文件整理下就更好了,现在好乱,不能好fork tutorials/application/source_zh_cn/nlp/sentiment_analysis.ipynb MindSpore/docs - Gitee.com...
linux深度学习环境配置(cuda,pytorch)
显卡驱动 首先查看linux服务器是否存在显卡驱动,可以输入以下命令 nvidia-smi如果没有直接显示下面的画面 则进行下面的步骤: ubuntu-drivers devices sudo ubuntu-drivers autoinstall上述步骤的意思是直接在线安装 然后重启linux服务器 reboot发现…...
SpringBoot教程(十九) | SpringBoot集成Slf4j日志门面
SpringBoot教程(十九) | SpringBoot集成Slf4j日志门面 一、概述二、前言三、引入依赖 (不需要额外引入了)四、自定义Logback的配置文件(一般都需配置)情况一:不配置任何关于logback的配置文件情况二:配置关…...
科普文:深入理解ElasticSearch体系结构
概叙 Elasticsearch是什么? Elasticsearch(简称ES)是一个分布式、可扩展、实时的搜索与数据分析引擎。ES不仅仅只是全文搜索,还支持结构化搜索、数据分析、复杂的语言处理、地理位置和对象间关联关系等。 官网地址:…...
极限学习机(ELM)预测模型及其Python和MATLAB实现
### 一、背景 在机器学习和数据挖掘领域,预测模型旨在从过往数据中学习规律,以便对未知数据进行预测。随着数据量的激增和计算能力的提升,各种算法不断涌现。其中,极限学习机(Extreme Learning Machine, ELM࿰…...
基于Python的哔哩哔哩国产动画排行数据分析系统
需要本项目的可以私信博主,提供完整的部署、讲解、文档、代码服务 随着经济社会的快速发展,中国影视产业迎来了蓬勃发展的契机,其中动漫产业发展尤为突出。中国拥有古老而又璀璨的文明,仅仅从中提取一部分就足以催生出大量精彩的…...
Java导出Excel给每一列设置不同样式示例
Excel导出这里不讲,方法很多,原生的POI可以参照 Java原生POI实现的Excel导入导出(简单易懂) 这里只说怎么给Excel每一列设置不同的样式,比如下面这样的 直接上代码 Overridepublic void exportTemplate(HttpServletRe…...
2.1、matlab绘图汇总(图例、标题、坐标轴、线条格式、颜色和散点格式设置)
1、前言 在 MATLAB 中进行绘图是一种非常常见且实用的操作,可以用来可视化数据、结果展示、分析趋势等。通过 MATLAB 的绘图功能,用户可以创建各种类型的图形,包括线图、散点图、柱状图、曲线图等,以及三维图形、动画等复杂的可视化效果。 在绘图之前,通常需要先准备好要…...
龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...
【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
