面试:CUDA Tiling 和 CPU tiling 技术详解
目录
一、CUDA Tiling 和 CPU Tiling 技术概述
(一)技术原理
(二)应用场景
(三)优势和劣势
二、Tiling 技术在深度学习中的应用
三、Tiling 技术的缺点

一、CUDA Tiling 和 CPU Tiling 技术概述
Tiling(平铺)是一种将大的问题或数据集分解为较小的子问题或子数据集的技术,目的是提高数据局部性和缓存利用率,从而提升程序性能。
(一)技术原理
-
CUDA Tiling
-
在 CUDA 编程中,常见的优化策略包括利用共享内存和循环分块。共享内存可被一个线程块内的所有线程访问,循环分块则将大循环分解为小循环,减少内存访问冲突,提高内存访问局部性。例如在矩阵乘法中,可将其分解为多个子矩阵乘法,然后用多个线程块并行计算,最后合并结果。
-
-
CPU Tiling
-
在 CPU 中,Tiling 用于优化矩阵乘法,将输入矩阵分成小块进行乘法运算,以减少内存访问次数,提高缓存命中率。
-
(二)应用场景
-
CUDA Tiling
-
适用于大量并行计算需求的场景,如图形处理、深度学习等。在深度学习的卷积神经网络训练和推理中,可利用其进行矩阵乘法优化。
-
-
CPU Tiling
-
适用于矩阵乘法运算需求的场景,如科学计算、数值分析等。
-
(三)优势和劣势
-
CUDA Tiling
-
优势:充分利用 GPU 并行计算能力,大幅提升性能。
-
劣势:需要了解 GPU 编程,考虑硬件特性和内存限制。
-
-
CPU Tiling
-
优势:实现相对简单。
-
劣势:性能提升相对有限,因 CPU 并行计算能力较弱。
-
二、Tiling 技术在深度学习中的应用
-
数据增强:对原始图像进行随机裁剪、旋转、翻转等操作,生成多个子图像作为训练数据,增加数据多样性,减少过拟合风险。
-
模型并行化:将模型拆分为子模型,在不同计算节点上并行训练,最后合并结果。
-
模型压缩:通过剪枝、量化等操作减少模型参数和计算量,然后对压缩后的模型进行 Tiling,并行执行推理,提高推理速度。
-
混合精度训练:结合低精度(如 FP16)和高精度(如 FP32)数值格式,关键部分用高精度保持精度,其余用低精度减少计算量。
-
分布式训练:在多个计算节点上分布训练数据并同时训练,通过数据或模型并行加快速度。
三、Tiling 技术的缺点
-
额外的内存开销:Tiling 过程中可能需为每个 tile 分配额外内存存储中间结果或数据,增加内存使用量,尤其在处理大规模数据或复杂任务时。
-
数据局部性问题:尽管旨在提高数据局部性,但在某些情况,若数据访问模式不符或本身局部性差,可能无法发挥优势甚至导致性能下降。
-
增加计算复杂性:使算法或代码实现更复杂,需仔细管理 tile 划分、数据传输和合并等操作,加大开发和调试难度。
-
可能存在的负载不均衡:数据分布不均或任务分配不合理时,某些 tile 处理时间长,导致负载不均衡,影响整体性能。
-
对特定问题的适用性:并非适用于所有问题或算法,对于特殊数据结构或计算模式的任务,可能需其他优化方法。
-
预处理开销:某些情况进行 Tiling 前需预处理,如确定 tile 大小、划分数据等,带来额外开销。
例如在矩阵乘法的 Tiling 实现中,若矩阵尺寸与 tile 大小不匹配或数据访问模式不利,可能无法达到理想性能提升。但合理选择 tile 大小、优化数据访问和任务分配等可减轻或避免这些缺点,发挥 Tiling 技术的性能优势。具体缺点表现因应用场景和实现方式而异。
有兴趣可以关注我的专栏《高性能开发基础教程》
该文章首发于 subscriptions:极空AI,后续我会在上面整理完整的AI+HPC资料,并提供相关书籍推荐,至于视频要不要录制,看大家需要不需要。
有兴趣的可以关注。

相关文章:
面试:CUDA Tiling 和 CPU tiling 技术详解
目录 一、CUDA Tiling 和 CPU Tiling 技术概述 (一)技术原理 (二)应用场景 (三)优势和劣势 二、Tiling 技术在深度学习中的应用 三、Tiling 技术的缺点 一、CUDA Tiling 和 CPU Tiling 技术概述 Til…...
SQL语句中,`TRUNCATE` 和 `DELETE`的区别
TRUNCATE 和 DELETE 是 SQL 中用于删除表中数据的两种命令,它们有一些关键区别: 1. 基本区别 DELETE: 删除表中的数据,但不会删除表结构和索引。可以使用 WHERE 子句来删除特定的记录,也可以不使用 WHERE 子句来删除所有记录。会…...
【Git】.gitignore全局配置与忽略匹配规则详解
设置全局配置 1)在C:/Users/用户名/目录下创建.gitignore文件,在里面添加忽略规则。 如何创建 .gitignore 文件? 新建一个.txt文件,重命名(包括后缀.txt)为 .gitignore 即可。 2)将.gitignore设…...
基于 YOLO V10 Fine-Tuning 训练自定义的目标检测模型
一、YOLO V10 在本专栏的前面几篇文章中,我们使用 ultralytics 公司开源发布的 YOLO-V8 模型,分别 Fine-Tuning 实验了 目标检测、关键点检测、分类 任务,实验后发现效果都非常的不错,但它已经不是最强的了。最新的 YOLO-V10 已经…...
Java学习2
1 如果要使用Long类型的变量,在数据值的后面加上L为后缀(可以是大写也可以是小写),例如 Long i9999999L; 2 如果要使用float类型的变量,在数据值的后面加上F为后缀(可以是大写也可以是小写)&a…...
CSS、less、 Sass、
1 CSS 1.1 css中.a.b 与 .a .b(中间有空格)的区别 区别: .a.b是获取同时含有a和b的元素.a .b(中间有空格),是获取.a元素下的所有.b元素<!DOCTYPE html> <html lang="en"> <head><meta charset="UTF-8"><meta name=&quo…...
北京大学:利用好不确定性,8B小模型也能超越GPT-4
大模型有一个显著的特点,那就是不确定性——对于特定输入,相同的LLM在不同解码配置下可能生成显著不同的输出。 比如问一问chatgpt“今天开心吗?”,可以得到两种不同的回答。 常用的解码策略有两种,一个是贪婪解码&am…...
哪些云服务商已通过了等保2.0合规性评估?
已通过等保2.0合规性评估的云服务商 根据最新的搜索结果,以下是已通过等保2.0合规性评估的云服务商: 阿里云:阿里云的“电子政务云平台系统”是全国首个通过等保2.0国标测评的云平台,显示了其在云计算领域的安全合规能力。华为云…...
PHP在线加密系统源码
历时半年,它再一次迎来更新[飘过] 刚刚发的那个有点问题,重新修了一下 本次更新内容有点多 1. 更新加密算法(这应该是最后一次更新加密算法了,以后主要更新都在框架功能上面了) 2. 适配php56-php74 3. 取消批量加…...
OpenCV学习笔记 比较基于RANSAC、最小二乘算法的拟合
一、RANSAC算法 https://skydance.blog.csdn.net/article/details/134887458https://skydance.blog.csdn.net/article/details/134887458 二、最小二乘算法 https://skydance.blog.csdn.net/article/details/115413982...
前端JS特效第53集:带声音的烟花模拟绽放特效插件
带声音的烟花模拟绽放特效插件,先来看看效果: 部分核心的代码如下(全部代码在文章末尾): <!DOCTYPE html> <html lang"en" > <head><meta charset"UTF-8"><title>Firework Simulator v2&…...
好展位,抢先订!2025浙江(玉环)机械展
2025第18届浙江(玉环)机械工业展览会 时间地点:2025年4月25-28日 玉环会展中心 近年来,随着玉环工业经济的蓬勃发展,汽摩配件、阀门水暖五金产业、铜加工、眼镜配件、金属加工生产等行业,如同贪婪的巨人&…...
Java面试八股之Spring如何解决循环依赖
Spring如何解决循环依赖 在Spring框架中,循环依赖问题通常发生在两个或多个Bean相互依赖的情况下。Spring为了解决循环依赖问题,采用了不同的策略,这些策略主要取决于Bean的作用域以及依赖注入的方式。下面是一些关键点: 单例Be…...
如何为 SQL Server 设置强密码以增强安全性?
为 SQL Server 设置强密码是增强数据库安全性的重要步骤。以下是一些关键步骤和最佳实践: 1. 使用复杂密码 长度:密码应至少为 12 个字符。字符类型:包括大写字母、小写字母、数字和特殊字符(如 !#$%^&*())。避免…...
C语言实现三子棋
通过一段时间的学习,我们已经能够较为熟练地使用分支语句,循环语句,创建函数,创建数组,创建随机数等。之前我们做过一个扫雷游戏,今天让我们再尝试创作一个三子棋游戏吧~ 一、三子棋游戏的思路 三子棋的游…...
昇思25天学习打卡营第XX天|RNN实现情感分类
希望代码能维持开源维护状态hhh,要是再文件整理下就更好了,现在好乱,不能好fork tutorials/application/source_zh_cn/nlp/sentiment_analysis.ipynb MindSpore/docs - Gitee.com...
linux深度学习环境配置(cuda,pytorch)
显卡驱动 首先查看linux服务器是否存在显卡驱动,可以输入以下命令 nvidia-smi如果没有直接显示下面的画面 则进行下面的步骤: ubuntu-drivers devices sudo ubuntu-drivers autoinstall上述步骤的意思是直接在线安装 然后重启linux服务器 reboot发现…...
SpringBoot教程(十九) | SpringBoot集成Slf4j日志门面
SpringBoot教程(十九) | SpringBoot集成Slf4j日志门面 一、概述二、前言三、引入依赖 (不需要额外引入了)四、自定义Logback的配置文件(一般都需配置)情况一:不配置任何关于logback的配置文件情况二:配置关…...
科普文:深入理解ElasticSearch体系结构
概叙 Elasticsearch是什么? Elasticsearch(简称ES)是一个分布式、可扩展、实时的搜索与数据分析引擎。ES不仅仅只是全文搜索,还支持结构化搜索、数据分析、复杂的语言处理、地理位置和对象间关联关系等。 官网地址:…...
极限学习机(ELM)预测模型及其Python和MATLAB实现
### 一、背景 在机器学习和数据挖掘领域,预测模型旨在从过往数据中学习规律,以便对未知数据进行预测。随着数据量的激增和计算能力的提升,各种算法不断涌现。其中,极限学习机(Extreme Learning Machine, ELM࿰…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
