当前位置: 首页 > news >正文

面试:CUDA Tiling 和 CPU tiling 技术详解

目录

一、CUDA Tiling 和 CPU Tiling 技术概述

(一)技术原理

(二)应用场景

(三)优势和劣势

二、Tiling 技术在深度学习中的应用

三、Tiling 技术的缺点


一、CUDA Tiling 和 CPU Tiling 技术概述

Tiling(平铺)是一种将大的问题或数据集分解为较小的子问题或子数据集的技术,目的是提高数据局部性和缓存利用率,从而提升程序性能。

(一)技术原理

  • CUDA Tiling

    • 在 CUDA 编程中,常见的优化策略包括利用共享内存和循环分块。共享内存可被一个线程块内的所有线程访问,循环分块则将大循环分解为小循环,减少内存访问冲突,提高内存访问局部性。例如在矩阵乘法中,可将其分解为多个子矩阵乘法,然后用多个线程块并行计算,最后合并结果。

  • CPU Tiling

    • 在 CPU 中,Tiling 用于优化矩阵乘法,将输入矩阵分成小块进行乘法运算,以减少内存访问次数,提高缓存命中率。

(二)应用场景

  • CUDA Tiling

    • 适用于大量并行计算需求的场景,如图形处理、深度学习等。在深度学习的卷积神经网络训练和推理中,可利用其进行矩阵乘法优化。

  • CPU Tiling

    • 适用于矩阵乘法运算需求的场景,如科学计算、数值分析等。

(三)优势和劣势

  • CUDA Tiling

    • 优势:充分利用 GPU 并行计算能力,大幅提升性能。

    • 劣势:需要了解 GPU 编程,考虑硬件特性和内存限制。

  • CPU Tiling

    • 优势:实现相对简单。

    • 劣势:性能提升相对有限,因 CPU 并行计算能力较弱。

二、Tiling 技术在深度学习中的应用

  • 数据增强:对原始图像进行随机裁剪、旋转、翻转等操作,生成多个子图像作为训练数据,增加数据多样性,减少过拟合风险。

  • 模型并行化:将模型拆分为子模型,在不同计算节点上并行训练,最后合并结果。

  • 模型压缩:通过剪枝、量化等操作减少模型参数和计算量,然后对压缩后的模型进行 Tiling,并行执行推理,提高推理速度。

  • 混合精度训练:结合低精度(如 FP16)和高精度(如 FP32)数值格式,关键部分用高精度保持精度,其余用低精度减少计算量。

  • 分布式训练:在多个计算节点上分布训练数据并同时训练,通过数据或模型并行加快速度。

三、Tiling 技术的缺点

  • 额外的内存开销:Tiling 过程中可能需为每个 tile 分配额外内存存储中间结果或数据,增加内存使用量,尤其在处理大规模数据或复杂任务时。

  • 数据局部性问题:尽管旨在提高数据局部性,但在某些情况,若数据访问模式不符或本身局部性差,可能无法发挥优势甚至导致性能下降。

  • 增加计算复杂性:使算法或代码实现更复杂,需仔细管理 tile 划分、数据传输和合并等操作,加大开发和调试难度。

  • 可能存在的负载不均衡:数据分布不均或任务分配不合理时,某些 tile 处理时间长,导致负载不均衡,影响整体性能。

  • 对特定问题的适用性:并非适用于所有问题或算法,对于特殊数据结构或计算模式的任务,可能需其他优化方法。

  • 预处理开销:某些情况进行 Tiling 前需预处理,如确定 tile 大小、划分数据等,带来额外开销。

例如在矩阵乘法的 Tiling 实现中,若矩阵尺寸与 tile 大小不匹配或数据访问模式不利,可能无法达到理想性能提升。但合理选择 tile 大小、优化数据访问和任务分配等可减轻或避免这些缺点,发挥 Tiling 技术的性能优势。具体缺点表现因应用场景和实现方式而异。

有兴趣可以关注我的专栏《高性能开发基础教程》

该文章首发于 subscriptions极空AI,后续我会在上面整理完整的AI+HPC资料,并提供相关书籍推荐,至于视频要不要录制,看大家需要不需要。

有兴趣的可以关注。

相关文章:

面试:CUDA Tiling 和 CPU tiling 技术详解

目录 一、CUDA Tiling 和 CPU Tiling 技术概述 (一)技术原理 (二)应用场景 (三)优势和劣势 二、Tiling 技术在深度学习中的应用 三、Tiling 技术的缺点 一、CUDA Tiling 和 CPU Tiling 技术概述 Til…...

SQL语句中,`TRUNCATE` 和 `DELETE`的区别

TRUNCATE 和 DELETE 是 SQL 中用于删除表中数据的两种命令,它们有一些关键区别: 1. 基本区别 DELETE: 删除表中的数据,但不会删除表结构和索引。可以使用 WHERE 子句来删除特定的记录,也可以不使用 WHERE 子句来删除所有记录。会…...

【Git】.gitignore全局配置与忽略匹配规则详解

设置全局配置 1)在C:/Users/用户名/目录下创建.gitignore文件,在里面添加忽略规则。 如何创建 .gitignore 文件? 新建一个.txt文件,重命名(包括后缀.txt)为 .gitignore 即可。 2)将.gitignore设…...

基于 YOLO V10 Fine-Tuning 训练自定义的目标检测模型

一、YOLO V10 在本专栏的前面几篇文章中,我们使用 ultralytics 公司开源发布的 YOLO-V8 模型,分别 Fine-Tuning 实验了 目标检测、关键点检测、分类 任务,实验后发现效果都非常的不错,但它已经不是最强的了。最新的 YOLO-V10 已经…...

Java学习2

1 如果要使用Long类型的变量,在数据值的后面加上L为后缀(可以是大写也可以是小写),例如 Long i9999999L; 2 如果要使用float类型的变量,在数据值的后面加上F为后缀(可以是大写也可以是小写)&a…...

CSS、less、 Sass、

1 CSS 1.1 css中.a.b 与 .a .b(中间有空格)的区别 区别: .a.b是获取同时含有a和b的元素.a .b(中间有空格),是获取.a元素下的所有.b元素<!DOCTYPE html> <html lang="en"> <head><meta charset="UTF-8"><meta name=&quo…...

北京大学:利用好不确定性,8B小模型也能超越GPT-4

大模型有一个显著的特点&#xff0c;那就是不确定性——对于特定输入&#xff0c;相同的LLM在不同解码配置下可能生成显著不同的输出。 比如问一问chatgpt“今天开心吗&#xff1f;”&#xff0c;可以得到两种不同的回答。 常用的解码策略有两种&#xff0c;一个是贪婪解码&am…...

​​​​​​​哪些云服务商已通过了等保2.0合规性评估?​​​​​​​

已通过等保2.0合规性评估的云服务商 根据最新的搜索结果&#xff0c;以下是已通过等保2.0合规性评估的云服务商&#xff1a; 阿里云&#xff1a;阿里云的“电子政务云平台系统”是全国首个通过等保2.0国标测评的云平台&#xff0c;显示了其在云计算领域的安全合规能力。华为云…...

PHP在线加密系统源码

历时半年&#xff0c;它再一次迎来更新[飘过] 刚刚发的那个有点问题&#xff0c;重新修了一下 本次更新内容有点多 1. 更新加密算法&#xff08;这应该是最后一次更新加密算法了&#xff0c;以后主要更新都在框架功能上面了&#xff09; 2. 适配php56-php74 3. 取消批量加…...

OpenCV学习笔记 比较基于RANSAC、最小二乘算法的拟合

一、RANSAC算法 https://skydance.blog.csdn.net/article/details/134887458https://skydance.blog.csdn.net/article/details/134887458 二、最小二乘算法 https://skydance.blog.csdn.net/article/details/115413982...

前端JS特效第53集:带声音的烟花模拟绽放特效插件

带声音的烟花模拟绽放特效插件&#xff0c;先来看看效果&#xff1a; 部分核心的代码如下(全部代码在文章末尾)&#xff1a; <!DOCTYPE html> <html lang"en" > <head><meta charset"UTF-8"><title>Firework Simulator v2&…...

好展位,抢先订!2025浙江(玉环)机械展

2025第18届浙江&#xff08;玉环&#xff09;机械工业展览会 时间地点&#xff1a;2025年4月25-28日 玉环会展中心 近年来&#xff0c;随着玉环工业经济的蓬勃发展&#xff0c;汽摩配件、阀门水暖五金产业、铜加工、眼镜配件、金属加工生产等行业&#xff0c;如同贪婪的巨人&…...

Java面试八股之Spring如何解决循环依赖

Spring如何解决循环依赖 在Spring框架中&#xff0c;循环依赖问题通常发生在两个或多个Bean相互依赖的情况下。Spring为了解决循环依赖问题&#xff0c;采用了不同的策略&#xff0c;这些策略主要取决于Bean的作用域以及依赖注入的方式。下面是一些关键点&#xff1a; 单例Be…...

如何为 SQL Server 设置强密码以增强安全性?

为 SQL Server 设置强密码是增强数据库安全性的重要步骤。以下是一些关键步骤和最佳实践&#xff1a; 1. 使用复杂密码 长度&#xff1a;密码应至少为 12 个字符。字符类型&#xff1a;包括大写字母、小写字母、数字和特殊字符&#xff08;如 !#$%^&*()&#xff09;。避免…...

C语言实现三子棋

通过一段时间的学习&#xff0c;我们已经能够较为熟练地使用分支语句&#xff0c;循环语句&#xff0c;创建函数&#xff0c;创建数组&#xff0c;创建随机数等。之前我们做过一个扫雷游戏&#xff0c;今天让我们再尝试创作一个三子棋游戏吧~ 一、三子棋游戏的思路 三子棋的游…...

昇思25天学习打卡营第XX天|RNN实现情感分类

希望代码能维持开源维护状态hhh&#xff0c;要是再文件整理下就更好了&#xff0c;现在好乱&#xff0c;不能好fork tutorials/application/source_zh_cn/nlp/sentiment_analysis.ipynb MindSpore/docs - Gitee.com...

linux深度学习环境配置(cuda,pytorch)

显卡驱动 首先查看linux服务器是否存在显卡驱动&#xff0c;可以输入以下命令 nvidia-smi如果没有直接显示下面的画面 则进行下面的步骤&#xff1a; ubuntu-drivers devices sudo ubuntu-drivers autoinstall上述步骤的意思是直接在线安装 然后重启linux服务器 reboot发现…...

SpringBoot教程(十九) | SpringBoot集成Slf4j日志门面

SpringBoot教程&#xff08;十九&#xff09; | SpringBoot集成Slf4j日志门面 一、概述二、前言三、引入依赖 (不需要额外引入了)四、自定义Logback的配置文件&#xff08;一般都需配置&#xff09;情况一&#xff1a;不配置任何关于logback的配置文件情况二&#xff1a;配置关…...

科普文:深入理解ElasticSearch体系结构

概叙 Elasticsearch是什么&#xff1f; Elasticsearch&#xff08;简称ES&#xff09;是一个分布式、可扩展、实时的搜索与数据分析引擎。ES不仅仅只是全文搜索&#xff0c;还支持结构化搜索、数据分析、复杂的语言处理、地理位置和对象间关联关系等。 官网地址&#xff1a;…...

极限学习机(ELM)预测模型及其Python和MATLAB实现

### 一、背景 在机器学习和数据挖掘领域&#xff0c;预测模型旨在从过往数据中学习规律&#xff0c;以便对未知数据进行预测。随着数据量的激增和计算能力的提升&#xff0c;各种算法不断涌现。其中&#xff0c;极限学习机&#xff08;Extreme Learning Machine, ELM&#xff0…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...