当前位置: 首页 > news >正文

阿里笔试2023-3-15

太菜了,记录一下笔试题目,代码有更好解法欢迎分享。
1、满二叉子树的数量。
给定一颗二叉树,试求这课二叉树有多少个节点满足以该节点为根的子树是满二叉树?满二叉树指每一层都达到节点最大值。
第一行输入n表示节点数量,接下来n行第一个代表左儿子,第二个代表右儿子。

public class Main {static int res = 0;public static void main(String[] args) {Scanner in = new Scanner(System.in);int n = in.nextInt();int[][] nums = new int[n][2];for (int i = 0; i < n; i ++) {nums[i][0] = in.nextInt();nums[i][1] = in.nextInt();}new Main().isFullTree(nums, 1)System.out.println(res);}public int height(int[][] nums, int root) {if (root == -1) {return 0;}return Math.max(height(nums, nums[root - 1][0]), height(nums, nums[root - 1][1])) + 1;}public boolean isFullTree(int[][] nums, int root) {if (root == -1) {return true;}if (isFullTree(nums, nums[root - 1][0]) && isFullTree(nums, nums[root - 1][1]) && height(nums, nums[root - 1][0]) == height(nums, nums[root - 1][1])) {res ++;return true;} else {return false;}}
}

上述解法时间复杂度O(n),空间复杂度o()
另外,可以掌握根据数组进行二叉树建树

class TreeNode {TreeNode left;TreeNode right;int val;public TreeNode() {}public TreeNode(int val) {this.val = val;}public TreeNode (TreeNode left, TreeNode right, int val) {this.left = left;this.right = right;this.val = val;}
}public static void main(String[] args) {List<TreeNode> nodeList = new ArrayList<>();nodeList.add(null);for (int i = 1; i <= n; i ++) {nodeList.add(new TreeNode(i));}for (int i = 0; i < n; i ++) {if (nums[i][0] == -1) {nodeList.get(i + 1).left = null;} else {nodeList.get(i + 1).left = nodeList.get(nums[i][0]);}if (nums[i][1] == -1) {nodeList.get(i + 1).right = null;} else {nodeList.get(i + 1).right = nodeList.get(nums[i][1]);}}
}

2、三元组计数。
给定一个数组,计算有多少个三元组0<=i<j<k<n,且max(nums[i], nums[j], nums[k]) - min(nums[i], nums[j], nums[k]) = 1。
第一行输入n表示数组个数,第二行输入n个整数。

public static void main(String[] args) {Scanner scanner = new Scanner(System.in);int n = scanner.nextInt();int[] nums = new int[n];for (int i = 0; i < n; i++) {nums[i] = scanner.nextInt();}Arrays.sort(nums);Map<Integer, Integer> map = new HashMap<>();int res = 0;for (int i = 0; i < n; i ++) {map.put(nums[i], map.getOrDefault(nums[i], 0) + 1);}for (int i = 0; i < n; i ++) {if (i > 0 && nums[i] == nums[i - 1]) {continue;}if (map.containsKey(nums[i] + 1)) {int low = map.get(nums[i]);int high = map.get(nums[i] + 1);if (low == 1 && high == 1) {continue;}if (high > 1) {res += low * high * (high - 1) / 2;}if (low > 1) {res += high * low * (low - 1) / 2;}}}System.out.println(res);
}

上述解法时间复杂度O(nlog(n)),空间复杂度O(n)。
3、乘2除2。
在n个元素的数组中选择k个元素,每个元素要么乘以2,要么除以2并向下取整,使得操作完后数组的极差尽可能小,并且输出极差。极差为最大值减去最小值。
第一行输入整数n和k。第二行输入n个整数表示数组。

public static void main(String[] args) {Scanner scanner = new Scanner(System.in);int n = scanner.nextInt();int k = scanner.nextInt();int[] nums = new int[n];for (int i = 0; i < n; i++) {nums[i] = scanner.nextInt();}Comparator<Integer> comparator = new Comparator<Integer>() {@Overridepublic int compare(Integer o1, Integer o2) {return o2 - o1;}};Arrays.sort(nums);PriorityQueue<Integer> queueMin = new PriorityQueue<>(comparator);PriorityQueue<Integer> queueMid = new PriorityQueue<>(comparator);PriorityQueue<Integer> queueMax = new PriorityQueue<>(comparator);int minMin = Integer.MAX_VALUE, midMin = Integer.MAX_VALUE, maxMin = Integer.MAX_VALUE;for (int i = 0; i < k ; i ++) {minMin = Math.min(minMin, 2 * nums[i]);queueMin.add(2 * nums[i]);}for (int i = k; i < n; i ++) {midMin = Math.min(midMin, nums[i]);queueMid.add(nums[i]);}int res = Integer.MAX_VALUE;if (k == 0) {res = Math.min(res, queueMid.peek() - midMin);} else {res = Math.min(res, Math.max(queueMin.peek(), queueMid.peek()) - Math.min(minMin, midMin));}for (int i = 0; i < k; i ++) {int tempMin = queueMin.poll();queueMid.add(tempMin / 2);midMin = Math.min(midMin, tempMin / 2);int tempMid = queueMid.poll();queueMax.add(tempMid / 2);maxMin = Math.min(maxMin, tempMid / 2);if (i == k - 1) {res = Math.min(res, Math.max(queueMid.peek(), queueMax.peek()) - Math.min(Math.min(minMin, midMin), maxMin));} else {res = Math.min(res, Math.max(Math.max(queueMin.peek(), queueMid.peek()), queueMax.peek()) - Math.min(Math.min(minMin, midMin), maxMin));}}System.out.println(res);
}

上述解法时间复杂度O(nlog(n)),空间复杂度O(n)。

相关文章:

阿里笔试2023-3-15

太菜了&#xff0c;记录一下笔试题目&#xff0c;代码有更好解法欢迎分享。 1、满二叉子树的数量。 给定一颗二叉树&#xff0c;试求这课二叉树有多少个节点满足以该节点为根的子树是满二叉树&#xff1f;满二叉树指每一层都达到节点最大值。 第一行输入n表示节点数量&#xff…...

STM32:TIM定时器输出比较(OC)

一、输出比较简介 1、输出比较 OC&#xff08;Output Comapre&#xff09;输出比较输出比较可以通过比较CNT&#xff08;时基单元&#xff09;和CCR&#xff08;捕获单元&#xff09;寄存器值的关系&#xff0c;来对输出电平进行置1、置0或翻转的操作&#xff0c;用于输出一定频…...

HTTPS 加密协议

✏️作者&#xff1a;银河罐头 &#x1f4cb;系列专栏&#xff1a;JavaEE &#x1f332;“种一棵树最好的时间是十年前&#xff0c;其次是现在” 目录HTTPS"加密" 是什么HTTPS 的工作过程引入证书HTTPS http 安全层 (SSL) SSL 用来加密的协议&#xff0c;也叫 TLS …...

分布式锁和分布式事务

分布式锁 没有图形&#xff0c;只通过大量文字进行说明。分布式锁&#xff1a;redis分布式锁&#xff0c; zk分布式锁&#xff0c; 数据库做分布式锁 redis分布式锁 setnx key value ex 10 原子操作 AB两个线程减库存业务&#xff0c;假设库存是10 A线程获取锁&#xff0c;…...

RK3568平台开发系列讲解(驱动基础篇)I2C协议介绍

🚀返回专栏总目录 文章目录 一、I2C基本读写过程二、通讯的起始和停止信号三、数据有效性四、地址及数据方向五、响应沉淀、分享、成长,让自己和他人都能有所收获!😄 📢I2C的协议定义了通讯的起始和停止信号、数据有效性、响应、仲裁、时钟同步和地址广播等环节。 一、…...

HTML 音频(Audio)

HTML 音频(Audio) 声音在HTML中可以以不同的方式播放. 问题以及解决方法 在 HTML 中播放音频并不容易&#xff01; 您需要谙熟大量技巧&#xff0c;以确保您的音频文件在所有浏览器中&#xff08;Internet Explorer, Chrome, Firefox, Safari, Opera&#xff09;和所有硬件上…...

什么是Vue

✅作者简介&#xff1a;CSDN一位小博主&#xff0c;正在学习前端&#xff0c;欢迎大家一起来交流学习&#x1f3c6; &#x1f4c3;个人主页&#xff1a;白月光777的CSDN博客 &#x1f525;系列专栏&#xff1a;Vue从入门到进阶 &#x1f4ac;个人格言&#xff1a;但行好事&…...

python 内置函数和多线程

以下是Python的一些内置函数。这些函数是Python语言提供的基本功能&#xff0c;可以在不需要导入任何其他模块的情况下直接使用。这些函数可以完成广泛的任务&#xff0c;例如数学运算&#xff0c;序列和集合操作&#xff0c;类型转换&#xff0c;文件操作等等。透彻理解这些函…...

【Spring】我抄袭了Spring,手写一套MySpring框架。。。

这篇博客实现了一个简单版本的Spring&#xff0c;主要包括Spring的Ioc和Aop功能 文章目录这篇博客实现了一个简单版本的Spring&#xff0c;主要包括Spring的Ioc和Aop功能&#x1f680;ComponentScan注解✈️Component注解&#x1f681;在spring中ioc容器的类是ApplicationConte…...

vue中的生命周期

前言 很多时候我们希望能在 vue 生命周期的过程中执行一些操作&#xff0c;生命周期钩子函数也因此诞生了。相信使用过 vue 框架的同学都知道&#xff0c;生命周期的钩子函数允许我们在实例的不同阶段执行各种操作&#xff0c;便于我们更好的控制和使用实例。 生命周期钩子函数…...

硬件原理图设计规范(二)

1、可编程逻辑器件 编号 级别 条目内容 备注 1 推荐 FPGA的LE资源利用率要保证在50%&#xff5e;80%之间&#xff0c;EPLD的MC资源的利用率要保证在50%&#xff5e;90%之间。对于FPGA中的锁相环、RAM、乘法器、DSP单元、CPU核等资源&#xff0c;经过精确预算&#xff0c;…...

复旦微ZYNQ7020全国产替代方案设计

现在国产化进度赶人&#xff0c;进口的芯片只做了个功能验证&#xff0c;马上就要换上国产的。国内现在已经做出来zynq的只有复旦微一家&#xff0c;已经在研制的有上海安路&#xff0c;还有成都华微&#xff08;不排除深圳国威也在做&#xff0c;毕竟这个市场潜力很大&#xf…...

蓝桥杯真题——自动售水机

2012年第四届全国电子专业人才设计与技能大赛“自动售水机”设计任务书1. 系统框图接下来我们将任务分块&#xff1a; 1. 按键控制单元 设定按键 S7 为出水控制按键&#xff0c;当 S7 按下后&#xff0c;售水机持续出水&#xff08;继电器接通&#xff0c;指示 灯 L10 点亮&…...

软件质量保证与测试 课程设计 测试报告 缺陷报告撰写方法

测 试 报 告 2020年 6月 1日 测试项目 程序员 测试人 测试阶段&#xff1a; □集成 √系统 □ 测试日志编号清单 1,2,3,4,5,6,7,8,9,10 遗留错误说明&#xff1a;&#xff08;测试后仍然遗留下来未解决的错误及其说明&#xff09; 1.系统界面不够友好&…...

vue2和vue3中路由的区别和写法?

前言&#xff1a;Vue 2 和 Vue 3 中路由的主要区别在于使用的路由库不同。在 Vue 2 中&#xff0c;通常使用 Vue Router 作为路由库&#xff1b;而在 Vue 3 中&#xff0c;Vue Router 仍然是官方推荐的路由库&#xff0c;但也可以选择使用新的路由库 - Vue Router Next。下面分…...

【数据结构】第四站:单链表力扣题(一)

目录 一、移除链表元素 二、链表的中间结点 三、链表中倒数第k个结点 四、反转链表 五、合并两个有序链表 六、分割链表 一、移除链表元素 题目描述&#xff1a;力扣 法一&#xff1a;直接循环依次判断 对于这个题目&#xff0c;我们最容易想到的一种思路就是&#xff0c…...

SAP BPC简介

BPC是SAP在financial application领域主推的产品&#xff0c;由于从原有产品线发展而来&#xff0c;产品本身有两个版本&#xff0c;分别是基于MS OLAP平台和Netweaver OLAP平台。 整个系统分为.net前台和abap后台。由于abap端的数据结构与.net数据结构的差异&#xff0c;所以没…...

Linux网络概述

写咋前面 今天,我们需要初步的认识一下Linux中网络的基本原理,只有大家对这个有一个初步的认识,后面我们学习起来才会更加的简单容易.计算机语言知识那么多,但是Linux不是.面试时,面试官总是会有问题难住你,我们后面需要看看书,这一点非常重要.我们现在谈的是脉络,.是框架.这些…...

Mybatis --- 获取参数值和查询功能

一、MyBatis的增删改查 1.1、新增 <!--int insertUser();--> <insert id"insertUser">insert into t_user values(null,admin,123456,23,男) </insert> 1.2、删除 <!--int deleteUser();--> <delete id"deleteUser">dele…...

【C++】C++入门,你必须要知道的知识

1.C关键字 &#x1f525;前言&#xff1a; C是在C的基础之上&#xff0c;容纳进去了面向对象编程思想&#xff0c;并增加了许多有用的库&#xff0c;以及编程范式等。熟悉C语言之后&#xff0c;对C学习有一定的帮助。今天的主要目标&#xff1a; 1️⃣ 补充C语言语法的不足&…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

微信小程序 - 手机震动

一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注&#xff1a;文档 https://developers.weixin.qq…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...