当前位置: 首页 > news >正文

数字图像边缘曲率计算及特殊点检测

一、曲率和数字图像边缘曲率检测常用方法简介

    边缘曲率作为图像边缘特征的重要参数,不仅反映了边缘的几何形状信息,还对于图像识别、图像分割、目标跟踪等任务具有显著影响。

      曲线的曲率(curvature)就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。数学上表明曲线在某一点的弯曲程度的数值。曲率越大,曲线的弯曲程度越大。曲率的倒数就是曲率半径。

      曲率K的计算公式如下:

        在二维情况下,其标量形式为:

        在数字图像处理中,由于图像数据本质上是离散的(即像素值是在二维网格上的离散点),我们不能直接应用连续域中的微积分理论。因此,为了分析图像的局部变化(如边缘检测、纹理分析等),我们通常采用差分来近似连续域中的微分操作。

      目前,数字图像边缘曲率检测的常用方法主要有基于微分几何的方法、基于图像处理的方法以及基于机器学习的方法等。这些方法各有优缺点,如基于微分几何的方法计算精度高但计算复杂度高,基于图像处理的方法实现简单但易受噪声干扰,基于机器学习的方法则依赖于大量训练数据且模型泛化能力有限。

  • 二、数字图像曲率计算和特殊点检测思路

     主要算法思路:1.读入彩色图像  2.彩色图像转灰度图像  3.获取边界点4.通过简化计算曲率(如差分代替微分)5.对特殊点(曲率突变点)进行标记。

  • 三、程序代码

    %曲率计算和曲率突变点检测

    clear all;  

    close all;  

    clc;  

    % 读取图像  

    I = imread('FC0.png');  

    [m n d]=size(I);

    % 显示原始图像  

    imshow(I);  

    title('原始图像');  

    % 转换为灰度图像  

    Igray = rgb2gray(I);  

    BW=imbinarize(Igray);%图像二值化

    BW=~BW;

      figure,imshow(BW);

    [B, L] = bwboundaries(BW, 'noholes');    % 轮廓提取  

    boundary = B{1};  % 假设我们只处理最大的轮廓(或根据需要选择其他轮廓)

    size(B{1})  %1079行2列

    % 轮廓点坐标  

    x = boundary(:, 2);  %对应boundary矩阵的列

    y = boundary(:, 1);  %对应boundary矩阵的行

    plot(x,y),title('轮廓点边界曲线');

    % 计算轮廓点的差分(用于近似导数)  

    dx = diff(x);  

    dy = diff(y);  

    % 计算曲率(使用简单的差分近似)  

    % 注意:这里的R和k计算都是近似的  

    R = sqrt(dx.^2 + dy.^2); % 近似“半径”(实际上是轮廓点之间的局部距离)  

    % 由于dx和dy已经是差分,所以这里不再对dy和dx使用diff  

    k = abs(dx(1:end-1) .* dy(2:end) - dy(1:end-1) .* dx(2:end)) ./ (R(1:end-1).^3);  %计算曲率

    % 在k向量首尾添加NaN(或选择其他方式处理边界),因为首尾没有有效的曲率值k

    size(k);

    k = [NaN; k; NaN];  

    max(k);    %找到曲率最大值

    % 通过设置曲率阈值以识别特殊点  

    threshold = 0.05; % 这个值需要根据实际情况调整  

    special_points = find(k > threshold & ~isnan(k)); % 排除NaN值并找到曲率突变点  

    % 显示结果  

    figure;  

    imshow(I);  

    hold on;  %保持当前图形

    plot(x(special_points), y(special_points), 'go', 'MarkerSize', 8, 'LineWidth', 1); % 绘制曲率突变点

    title('曲率突变点检测');  

    hold off;  

    % 注意:此代码中的曲率计算进行了简化,在实际应用中,可能需要使用更精确的数值方法%%或基于几何的曲率估计

  • 四、测试图像

  • 五、部分运行结果

  •    如果大家觉得本文对大家有帮助,请关注、收藏和点赞,谢谢大家支持!

相关文章:

数字图像边缘曲率计算及特殊点检测

一、曲率和数字图像边缘曲率检测常用方法简介 边缘曲率作为图像边缘特征的重要参数,不仅反映了边缘的几何形状信息,还对于图像识别、图像分割、目标跟踪等任务具有显著影响。 曲线的曲率(curvature)就是针对曲线上某个点的切线方向…...

python map

在 Python 中,如果你指的是字典(dictionary),可以使用字典的 .items() 方法来遍历键值对。Python 中没有严格意义上的 Map 类型,而是使用字典来实现类似于键值对映射的功能。 遍历字典的键值对 可以使用 for 循环和 …...

每日一练 - NFV部署应用环境

01 真题题目 NFV 常常部署在下列哪些应用环境中?(多选) A.数据中心 B.网络节点 C.用户接入侧 D.客户机/服务器 02 真题答案 ABC 03 答案解析 NFV(Network Functions Virtualization,网络功能虚拟化)是一种技术,它允许在标准的…...

031-GeoGebra中级篇-GeoGebra的布尔值

在 GeoGebra 中,布尔值和条件判断是实现动态数学模型和交互式几何图形的重要工具。布尔值,即逻辑值,只有两个可能的取值:真(True)或假(False)。通过使用布尔值,我们可以创…...

基于Debian用户安装星火商店

星火商店下载地址:https://www.spark-app.store/ 本文章我以kali linux来做示范 注:基本debian的linux包括ubuntu,mint linux,kali linux,Pop!_OS,deepin等等 1.点击下载最新版本 2.点击下载 3.点击开始下载(它会自动跳转网页) 4.选择要下载…...

《计算机网络》(第8版)课后习题答案

【1-01】 计算机网络可以向用户提供哪些服务? 解答:这道题没有现成的标准答案,因为可以从不同的角度来看“服务”。 首先要明确的是,计算机网络可以向用户提供的最重要的功能有两个:连通性和共享。所 谓连通性,就是计算机网络使上网用户之间都可以交换信息,好像这些用户…...

我们的网站被狗爬了!

大家好,我是程序员鱼皮。 世风日下,人心不古。我们的程序员面试刷题网站 《面试鸭》 才刚刚上线了一个多月,就由于过于火爆,被不少同行和小人发起网络攻击。 而且因为我们已经有 4500 多道人工整理的企业高频面试题、100 多个各…...

docker安装与container基本使用

安装 Homebrew 的 Cask 已经支持 Docker for Mac, mac用户狂喜 brew install --cask --appdir/Applications docker其他入门用法可参考 Docker Hello World- 菜鸟教程 或网上自行搜索博客学习。本文主要记录我运行go-zero-mall用到的一些注意点。当然,gonivinck项…...

掌握文本搜索的利器:深入解析 Linux grep 命令的强大功能

grep 是一个强大的命令行工具,用于在文件中搜索指定的模式(字符串或正则表达式)。它的名字来源于 "global regular expression print",常用于文本处理、日志分析等任务。以下是 grep 命令的详细介绍和常用操作: 基本用法 搜索匹配的行 grep "pattern"…...

【天机学堂】面试总结

写在前面,首先要将天机学堂包装一下,智慧教育平台》,暂时就想到这个。天机学堂文档 1.包装简历 待更新。。。...

Java中Stream操作

Java中Stream操作 Stream 和 Optional区别 用途不同:Stream 用于处理集合中的元素序列,支持丰富的中间操作和终端操作;Optional 用于表示一个值可能为 null 的情况,提供了一种更优雅的处理方式。数据处理 vs. 容器:S…...

Spring Boot + MinIO 实现文件的分片上传、秒传、续传功能

文件上传是一个常见的功能需求。然而,传统的文件上传方式在面对大文件或不稳定的网络环境时,可能会出现性能瓶颈和上传失败的问题。为了解决这些问题,分片上传、秒传和续传技术应运而生. 技术选型 Spring Boot:一个快速开发框架,简化了 Spring 应用的搭建和配置。 MinIO:…...

Kafka基本概念,工作流程介绍

1、消息队列与Kafka 1.1、Kafka简介 Kafka使用scala开发,支持多语言客户端(c、java、python、go等) Kafka最先由LinkedIn公司开发,之后成为Apache的顶级项目。 Kafka是一个分布式的、分区化、可复制提交的日志服务 LinkedIn使…...

Golang | Leetcode Golang题解之第306题累加数

题目: 题解: func stringAdd(x, y string) string {res : []byte{}carry, cur : 0, 0for x ! "" || y ! "" || carry ! 0 {cur carryif x ! "" {cur int(x[len(x)-1] - 0)x x[:len(x)-1]}if y ! "" {cur i…...

快速排序(上)

快速排序 前言 快速排序算法是最流行的排序算法,且有充足的理由,因为在大多数情况下,快速排序都是最快的。所以学习快速排序算法十分有必要。当然,既然它这么好,也就不太容易理解。 正文 Hoare版快排 快速排序是Hoare在1962年提出的一种二叉树结构的…...

数据结构-队列

队列对于临时数据的处理也十分有趣,它跟栈一样都是有约束条件的数组。区别在于我们想要按什么顺序去处理数据,而这个顺序当然是要取决于具体的应用场景。 你可以将队列想象成是电影院排队。排在最前面的人会最先离队进入影院。套用到队列上,…...

MySQL:操作符

MySQL 操作符 MySQL 操作符是 MySQL 数据库操作中不可或缺的一部分,它们用于执行各种数据运算、比较、逻辑判断等。 MySQL 中有多种操作符可用于数据查询和筛选 MySQL 所提供的运算符可以直接对表中数据或字段进行运算 MySQL 支持 4 种运算符,分别是&…...

反序列化靶机实战serial(保姆级教程)

一.信息收集 靶机地址下载:https://download.vulnhub.com/serial/serial.zip 打开靶机,在kali虚拟机中进行主机存活探测 可以知道靶机ip地址为192.168.133.171 然后扫描端口 可以发现有一个22端口跟80端口 然后接下来用kali扫描它的目录 可以发现有一…...

【Git】git 从入门到实战系列(一)—— Git 的诞生,Linus 如何在 14 天内编写出 Git?

<> 博客简介&#xff1a;Linux、rtos系统&#xff0c;arm、stm32等芯片&#xff0c;嵌入式高级工程师、面试官、架构师&#xff0c;日常技术干货、个人总结、职场经验分享   <> 公众号&#xff1a;嵌入式技术部落   <> 系列专栏&#xff1a;C/C、Linux、rt…...

com.microsoft.sqlserve r:sqljdbc4:jar:4.0 was not found in......如何解决?

这个错误提示说 com.microsoft.sqlserver:sqljdbc4:jar:4.0 这个依赖无法从 Maven 中央仓库&#xff08;https://repo.maven.apache.org/maven2&#xff09;下载&#xff0c;导致项目无法构建。以下是解决该问题的几种方法&#xff1a; 方法一&#xff1a;手动安装依赖 下载 J…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验

Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...