springboot 集成私有化Ollama大模型开源框架,搭建AI智能平台
Ollama是一个用于大数据和机器学习的平台,它可以帮助企业进行数据处理、分析和决策制定。
1、在Spring Boot项目pom.xml中添加Ollama客户端库依赖
<dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
</dependency>
2、在yaml文件中配置ollama的地址和模型
spring:ai:ollama:base-url: http://127.0.0.1:11434chat:model: qwen:14b
配置文件指定了 Ollama API 地址和端口,同时指定了默认模型qwen:14b
3、 创建Controller,使用OllamaChatClient进行文字生成或者对话
import org.springframework.ai.chat.ChatResponse;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.ollama.OllamaChatClient;
import org.springframework.ai.ollama.api.OllamaOptions;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;@RestController
public class ChatClientController {@Autowired@Qualifier("ollamaChatClient")private OllamaChatClient ollamaChatClient;/*** */@GetMapping("/ollama/chat/v1")public String ollamaChat(@RequestParam String msg) {return this.ollamaChatClient.call(msg);}/*** prompt模板功能*/@GetMapping("/ollama/chat/v2")public Object ollamaChatV2(@RequestParam String msg) {Prompt prompt = new Prompt(msg);ChatResponse chatResponse = ollamaChatClient.call(prompt);return chatResponse;}/*** */@GetMapping("/ollama/chat/v3")public Object ollamaChatV3(@RequestParam String msg) {Prompt prompt = new Prompt(msg,OllamaOptions.create().withModel("qwen:14b").withTemperature(0.4F));ChatResponse chatResponse = ollamaChatClient.call(prompt);return chatResponse.getResult().getOutput().getContent();}
}
相关文章:
springboot 集成私有化Ollama大模型开源框架,搭建AI智能平台
Ollama是一个用于大数据和机器学习的平台,它可以帮助企业进行数据处理、分析和决策制定。 1、在Spring Boot项目pom.xml中添加Ollama客户端库依赖 <dependency><groupId>org.springframework.ai</groupId><artifactId>spring-a…...
6.key的层级结构
redis的key允许多个单词形成层级结构,多个单词之间用:隔开,格式如下: 项目名:业务名:类型:id 这个格式并非固定的,可以根据自己的需求来删除或添加词条。 例如: taobao:user:1 taobao:product:1 如果value是一个java对…...
LogonTracer图形化事件分析工具
LogonTracer这款工具是基于Python编写的,并使用Neo4j作为其数据库(Neo4j多用于图形数据库),是一款用于分析Windows安全事件登录日志的可视化工具。它会将登录相关事件中的主机名(或IP地址)和帐户名称关联起…...
【云原生】Prometheus监控Docker指标并接入Grafana
目录 一、前言 二、docker监控概述 2.1 docker常用监控指标 2.2 docker常用监控工具 三、CAdvisor概述 3.1 CAdvisor是什么 3.2 CAdvisor功能特点 3.3 CAdvisor使用场景 四、CAdvisor对接Prometheus与Grafana 4.1 环境准备 4.2 docker部署CAdvisor 4.2.2 docker部署…...
搭建日志系统ELK(二)
搭建日志系统ELK(二) 架构设计 在搭建以ELK为核心的日志系统时,Logstash作为日志采集的核心组件,负责将各个服务的日志数据采集、清洗、过滤。然而缺点也很明显: 占用较多的服务器资源。配置复杂,学习曲线陡峭。处理大数据量时…...
常用排序算法的实现与介绍
常用排序算法的实现与介绍 在计算机科学中,排序算法是非常基础且重要的一类算法。本文将通过C语言代码实现,介绍几种常见的排序算法,包括冒泡排序、选择排序、插入排序和快速排序。以下是这些排序算法的具体实现和简要介绍。 1. 冒泡排序&am…...
仓颉语言 -- 宏
使用新版本 (2024-07-19 16:10发布的) 1、宏的简介 宏可以理解为一种特殊的函数。一般的函数在输入的值上进行计算,然后输出一个新的值,而宏的输入和输出都是程序本身。在输入一段程序(或程序片段,例如表达…...
Nginx代理minIO图片路径实现公网图片访问
1、网络部署情况 VUE前端项目Nginx部署在公司内网,端口7790 后台接口项目部署在公司内网,端口7022 minIO服务部署在公司内网,端口9000 公网IP设备将80端口映射到7790端口(具体映射方式不详),实现通过互…...
从零开始掌握tcpdump:参数详解
Linux tcpdump命令详解 1. 语法 tcpdump [-adeflnnNOpqStvxX] [-c <数据包数目>] [-dd] [-ddd] [-F <表达文件>] [-i <网络界面>] [-r <数据包文件>] [-s <数据包大小>] [-tt] [-T <数据包类型>] [-vv] [-w <数据包文件>] [输出数…...
漏洞挖掘 | edusrc记一次某中学小程序渗透测试
一、搜集渗透目标 现在的EDU挖web端的上分效率远不如小程序,因此这篇文章浅浅记录一次小程序的挖掘吧。如果各位大牛想要快速出洞,不妨跳过大学,学院等小程序,而重点关注小学、中学、幼儿园等,这些小程序的出洞率还是…...
vulhub:nginx解析漏洞CVE-2013-4547
此漏洞为文件名逻辑漏洞,该漏洞在上传图片时,修改其16进制编码可使其绕过策略,导致解析为 php。当Nginx 得到一个用户请求时,首先对 url 进行解析,进行正则匹配,如果匹配到以.php后缀结尾的文件名ÿ…...
备战秋招:2024游戏开发入行与跳槽面试详解
注意:以下为本次分享概要,视频版内容更全面深入,详见文末 1.游戏开发领域秋招准备与面试技巧 本次分享由优梦创客机构的创始人雷蒙德主讲,专注于2024年秋招期间游戏开发领域的入行与跳槽面试准备。本次分享重点在于提供面试技巧…...
红外热成像手持终端:从建筑检测到野外搜救的全方位应用
红外热成像手持终端,凭借其独特的红外探测与夜视功能,广泛应用于多个关键领域。无论是军事侦察、消防救援中的夜间作业,还是电力巡检、野生动物观察等多样场景,其精准的红外热成像技术均能提供至关重要的实时数据,助力…...
day07 项目启动以及git
spring框架 spring 负责整合各种框架,把new对象的部分交给spring去做,对象new不出来,项目就启动不起来,这样可以有效保证所需要的对象都在容器中存在,后续的部分都可以顺利执行控制反转:业务对象创建依赖资…...
学会网络安全:开启广阔职业与责任之旅
在数字化时代,网络安全已成为社会经济发展的重要基石。随着互联网的普及和技术的飞速发展,网络安全威胁日益复杂多变,对国家安全、社会稳定以及个人隐私构成了严峻挑战。因此,掌握网络安全技能不仅意味着拥有了一项高价值的职业技…...
UE5 镜头
只狼镜头 Spring Arm 中 开启 Use Pawn Control Rotation:让镜头跟着鼠标移动BP_Character(Self) 中关闭 Use Controller Rotation Yaw:不要让人物和鼠标移动Character Movement 的 Rotation Setting 中 关闭 Use Controller Desired Rotationÿ…...
SpringBoot如何实现简单的跨域配置
在SpringBoot中实现简单的跨域配置,主要通过全局CORS配置来完成。这通常涉及到实现WebMvcConfigurer接口并覆盖addCorsMappings方法。以下是一个简单的示例,展示了如何在SpringBoot应用中配置CORS策略以允许跨域请求。 首先,需要创建一个配置…...
vue列表进入详情页实现上一篇下一篇功能
概述:需求就是需要可以看列表,然后点击列表的右侧详情看详情,通过详情来实现新增上一份,下一份按钮来实现直接看之后的详情。 网上的解决方法有很多 1.后台获取将全量的id,前台再去直接取下一个id方式。(…...
kalman的python实现
前面的kalman都是matlab的,这里在理解的基础上,尝试使用python实现,力求理解更多的内涵。 需要的包 import numpy as np import matplotlib.pyplot as plt 代码 KF algorith demo by Leo 2020.01.06 ZJG CAMPUS,ZJU import numpy as np…...
查找算法:线性查找,golang实现
目录 前言 线性查找 代码示例 1. 算法包 2. 线性查找代码 3. 模拟程序 4. 运行程序 循环次数 假如目标值正好在数组中的第一位 假如目标值正好在数组中的第五位 假如目标值正好在数组中的最后一位 假如目标值不在数组中 线性查找的思想 1. 顺序遍历 2. 比较 3.…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案
目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后,迭代器会失效,因为顺序迭代器在内存中是连续存储的,元素删除后,后续元素会前移。 但一些场景中,我们又需要在执行删除操作…...
解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用
在工业制造领域,无损检测(NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统,以非接触式光学麦克风技术为核心,打破传统检测瓶颈,为半导体、航空航天、汽车制造等行业提供了高灵敏…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用
中达瑞和自2005年成立以来,一直在光谱成像领域深度钻研和发展,始终致力于研发高性能、高可靠性的光谱成像相机,为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...
使用SSE解决获取状态不一致问题
使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件,这个上传文件是整体功能的一部分,文件在上传的过程中…...
Pydantic + Function Calling的结合
1、Pydantic Pydantic 是一个 Python 库,用于数据验证和设置管理,通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发(如 FastAPI)、配置管理和数据解析,核心功能包括: 数据验证:通过…...
