当前位置: 首页 > news >正文

KubeVirt虚拟机存储及网络卸载加速解决方案

1.  方案背景

1.1. KubeVirt介绍

随着云计算和容器技术的飞速发展,Kubernetes已成为业界公认的容器编排标准,为用户提供了强大、灵活且可扩展的平台来部署和管理各类应用。然而,在企业的实际应用中,仍有许多传统应用或遗留系统难以直接容器化,通常采用传统的虚拟化技术来支撑。因此,企业需要同时运行容器和虚拟机的混合云或私有云环境,以便开发者和运维人员方便地管理和维护这两种类型的工作负载,这促使了KubeVirt项目的诞生。

KubeVirt是一个开源项目,由Red Hat、IBM、Google、Intel和SUSE等多家公司共同推动和贡献。该项目旨在通过Kubernetes来管理和运行虚拟机(VMs),使虚拟机能够像容器一样被部署和消费。KubeVirt扩展了Kubernetes的API,增加了VirtualMachine和VirtualMachineInstance等自定义资源定义(CRDs),允许用户通过YAML文件或kubectl命令来管理虚拟机,极大简化了虚拟机的创建、更新、删除和查询过程。

KubeVirt 的价值主要体现在统一的资源管理,使得 Kubernetes 能够同时管理容器和虚拟机,为用户提供统一的资源管理界面。这消除了容器和虚拟机之间的管理界限,提高了资源管理的灵活性和效率,为用户提供了更多的选择,确保了应用的完整性和性能,促进了传统应用的现代化和云原生转型。

1.2. 问题与挑战

KubeVirt在提供虚拟机实例的部署和管理能力时,会面临着诸多网络和存储方面的问题与挑战。

如上图所示,构建KubeVirt虚拟机环境需要先启动一个Pod,在Pod中构建虚拟机的运行环境。

在无DPU/SmartNIC的场景下,Pod通过Kubernetes CNI创建的veth pair连接网络, 虚拟机为了对接CNI接入Pod中的网卡(eth0-nic),传统的虚拟机环境是需要创建网桥设备(k6t-eth0),网卡(eth0-nic)连接到网桥设备,然后再创建TAP设备(tap0),TAP设备(tap0)的一端连接到网桥设备,另外一端连接虚拟机,这样虚拟机网络打通了与主机上OVS的网络连接。在上图中可以看到,虚拟机的网络路径为:ovs --> vethxxx --> eth0-nic --> k6t-eth0 --> tap0 --> eth0。

此外,Pod的存储是通过Kubernetes CSI挂载到主机上云盘设备,传统网络存储都是基于TCP的iscsi/rbd/nvmeof-tcp提供的远端存储,在KubeVirt虚拟机环境中,远端存储被CSI挂载到Pod中直接被虚拟机使用。

如上所述,在KubeVirt虚拟机环境中,网络和存储的配置面临着一系列问题与挑战:

1、网络路径复杂且冗长:

在无DPU/SmartNIC的场景下,虚拟机网络路径包含了多个虚拟设备(如veth pair、网桥、TAP设备等),这使得网络路径复杂且冗长,这种长路径不仅增加了数据包处理的复杂度,提升了运维排障难度,还可能导致更高的延迟和性能瓶颈。

2、资源消耗高:

路径中过多的网络虚拟设备需要CPU和内存资源来处理数据包的转发和路由。这些资源消耗在高负载场景下尤为显著,可能导致宿主机资源紧张,整体资源利用率低。

3、网络性能低下:

由于网络路径复杂和资源消耗高,虚拟机的网络性能往往受到限制,在高吞吐量或低延迟要求的应用场景中,这种性能问题尤为明显。

4、基于TCP的远端存储存在性能瓶颈:

使用iSCSI、RBD(Ceph RBD)或NVMe-oF(TCP模式)等基于TCP的远端存储方案时,数据需要经过网络协议栈的处理,这增加了CPU的负担并可能导致较高的延迟,这些存储协议没有硬件加速的支持,因此在高I/O需求下性能表现不佳。

2.  方案介绍

2.1. 整体方案架构

为了应对KubeVirt虚拟机在网络与存储方面所遭遇的问题与挑战,本方案创造性地集成了DPU(数据处理单元)硬件,以下将详细阐述基于DPU卸载加速技术的KubeVirt虚拟机网络及存储解决方案的架构。

如上图所示,基于DPU改造后后,网络和存储都是从DPU卡接入的,DPU硬件支持数据包的高速处理和RDMA(远程直接内存访问)技术,提供对网络和存储的硬件加速能力。同时DPU集成了CPU核心,能够将OVS控制面卸载到DPU中,从而减少Host节点CPU的负载。为了把DPU接入K8S平台,需要使用基于DPU的CNI和CSI,用于对接DPU的网络和存储功能。

  • cni-controller:该组件执行kubernetes内资源到ovn资源的翻译工作,是SDN系统的控制平面,也相当于ovn的cms云管理系统。其监听所有和网络相关资源的事件,并根据资源变化情况更新ovn内的逻辑网络。
  • cni-node:为虚拟机提供虚拟网卡配置功能,调用 ovs 进行配置。
  • csi-controller:用于创建volume和nvmeof target;针对pvc,调用第三方的controller创建卷,创建快照和扩容等。
  • csi-node:为虚拟机所在容器提供云盘挂载功能,最终通过spdk 进行配置,spdk 通过 pcie 给虚拟机所在容器模拟磁盘。

2.2. 方案描述

2.2.1.  核心资源

 KubeVirt的核心资源主要是虚拟机资源,围绕虚拟机生命周期管理定义了其他的CRD资源,包括:

  • virtualmachines(vm): 该结果为集群内的VirtualMachineInstance提供管理功能,例如开机、关机、重启虚拟机,确保虚拟机实例的启动状态,与虚拟机实例是1:1的关系,类似与spec.replica为1的StatefulSet。
  • Virtualmachineinstances(vmi):VMI类似于kubernetes Pod,是管理虚拟机的最小资源。一个VirtualMachineInstance对象即表示一台正在运行的虚拟机实例,包含一个虚拟机所需要的各种配置。
2.2.2.  网络

    KubeVirt以multus(OVS)+sriov的网络接入方式使用DPU,虚拟机网络的接入定义需要分成2部分:

  • 节点的基础网络如何接入pod中。
  • pod中的网络如何接入虚拟机中。
2.2.2.1. 网络控制面

   

如上图所示,将master节点,dpu卡,Host都作为node加入k8s集群,这些node上运行着DPU CNI的相关组件,下面分别进行介绍:

  • ovn和ovs为转发面核心组件,共同提供SDN(软件定义网络)能力,其中ovn负责网络逻辑层面的管理和抽象,而ovs则负责实际数据包的转发和处理。
  • cni-controller,该组件执行kubernetes内资源到ovn资源的翻译工作,是SDN系统的控制平面,也相当于ovn的cms云管理系统。其监听所有和网络相关资源的事件,并根据资源变化情况更新ovn内的逻辑网络。
  • cni-bin,一个二进制程序,作为kubelet和cni-node之间的交互工具,将相应的CNI请求发给cni-node执行。
  • cni-node,该组件作为一个DaemonSet运行在每个节点上,实现CNI接口,并监听api-server配置本地网络,其会根据工作模式做相应的网络配置,工作模式有以下几种:

1)Default模式: cni-node的默认工作模式,master和带SmartNic卡的Host节点中的cni-node均工作于此模式。在该模式下,会对安置在其上的容器配置完整的虚拟网络配置,如容器网络和ovs网络。

2)DPU模式:DPU节点中的cni-node工作于此模式。在该模式下,会对安置在DPU内的容器配置完成的虚拟网络配置。而对安置在其Host的容器,会配置ovs网络。

3)Host模式:带DPU卡的Host节点中的cni-node工作于此模式。在该模式下,只会去配置容器网络,而对应的底层网络如ovs网络,则交由其对应DPU上工作在DPU模式的cni-node完成。

2.2.2.2. 网络数据面

基于DPU卸载与加速的高性能网络,其核心技术的数据面原理如上图所示。基于ovn/ovs提供SDN的能力,并基于DPU提供的SRIOV及流表卸载功能,对网络进行了加速,为云上业务提高了高性能网络。

2.2.3.  存储

Kubevirt并没有重新定义存储,存储还是由Kubernetes定义的,所以还是沿用CSI规范创建/挂载/删除磁盘卷,如上图所示。主流平台的磁盘卷都是通过网络(TCP/RDMA)来挂载的,一般都是基于TCP的,RDMA需要硬件的支持。

2.2.3.1. 存储控制面

基于DPU的虚拟机磁盘卷架构如如上图所示,将master节点,dpu卡,Host都作为node加入k8s集群,这些node上运行着DPU CSI的相关组件,k8s node分为不同的角色,不同组件分别部署在不同的node之上。

  • Master上,部署 csi的控制器csi-controller,其中部署包含了组件external-provisioner、csi-plugin、​​csi-attacher​​​、​​csi-resizer​​和csi-snapshotter等组件,用于创建volume和nvmeof target;
  • Host上,部署csi-node-host,配合csi-node-dpu,通过va发现DPU挂载的nvme盘,然后执行绑定或者格式化;
  • DPU上,部署csi-node-dpu,volume-attacher,opi-bridge和SPDK,主要负责连接远端存储target,及向宿主机模拟nvme硬盘;
  1. opi-bridge是卡对opi-api存储的实现。
  2. volume-attacher是对DPU存储相关方法的封装;csi-node-dpu 调用volume-attacher给host挂盘 为了对接不同的存储,CSI提供了csi-framework, 通过csi-framework能快速的接入第三方的存储,让第三方存储很方便的使用DPU的能力;同时CSI提供基于opi框架的opi-framework,通过opi-framework能快速让DPU适配到K8S集群。
2.2.3.2. 存储数据面

DPU通过网络连接远端存储target,实现了存储协议的卸载,同时能基于RDMA进行网络路径上的加速;另一方面,DPU模拟了nvme协议,通过PCIe向宿主机提供了nvme块设备。

3.  方案测试结果

3.1. 测试步骤说明

主要是对KubeVirt虚拟机的网络和存储进行性能验证:

  • 网络性能主要测试卸载CNI方案和非卸载CNI方案下的虚拟机网卡性能,包括带宽、PPS、时延。
  • 存储性能主要针对虚拟机的数据盘进行验证,包括顺序写吞吐、顺序读吞吐、随机写IOPS、随机读IOPS、随机写时延、随机读时延。虚拟机的数据盘来源于DPU模拟的nvme磁盘,后端存储协议有2种:nvme over tcp和nvme over rdma。

使用卸载CNI方案的虚拟机网络拓扑如下图:

使用非卸载CNI方案的虚拟机网络拓扑如下图:

3.2. 性能测试结果

以下列举基于DPU (100G)网络方案的网络性能指标,并与非硬件卸载CNI方案做简单对比:

分类

性能指标

非卸载CNI方案

卸载CNI方案

网络

网络带宽

27.4Gbps

137Gbps

网络PPS

3.4M

26M

网络时延

783us

18us

从上表可知基于卸载CNI方案的网络性能相比于非卸载CNI方案来说,网络带宽提升了4倍,网络PPS提升了6.6倍,网络时延降低了97.7%

基于DPU(100G)存储方案性能指标,nvme over rdma对比nvme over tcp:

分类

性能指标

nvme over tcp

nvme over rdma

存储

顺序写吞吐

1146MiB/s

2577MiB/s

顺序读吞吐

431MiB/s

5182MiB/s

随机写IOPS

104k

232k

随机读IOPS

63.1k

137k

随机写时延

164us

60us

随机读时延

429us

127us

从上表可知,nvme over rdma方式的存储在吞吐、IOPS、时延方面全面优于nvme over tcp方式的存储。另外,nvme over rdma场景下的存储性能远低于容器挂载硬盘时的性能(650kiops),原因是当前虚拟机的硬盘是通过virtio方式挂载的,存在额外的虚拟化开销,性能上受到限制。

4.  优势总结

在KubeVirt虚拟机环境中,基于DPU硬件卸载的方案相较于传统的非卸载方案,具有显著的优势,这些优势主要体现在网络性能、资源利用率、时延降低以及存储性能加速等方面,具体总结如下:

1、降低网络复杂度和运维排障难度:

通过DPU的网络卸载能力,实现了网卡直通到虚拟机,减少了虚拟网络设备(veth pair、网桥、TAP设备等),极大地缩短了网络路径,降低了网络复杂性和运维排障难度,并减少了数据在传输过程中的延迟和损耗。

2、显著提升网络性能:

将虚拟机的流表卸载到DPU中,利用硬件进行流表处理,直接将网络数据对接到虚拟机,这一过程比软件处理更为高效,为虚拟机提供了接近物理网卡的极致性能。这种方式使得网络带宽提升了4倍,PPS(每秒包数)提升了6.6倍,网络时延降低了97.7%,显著提升了网络吞吐量和处理速度。

3、降低资源消耗:

将OVS(Open vSwitch)控制面和数据面都部署在DPU中,利用DPU的硬件资源进行网络数据包的转发和处理,大大减轻了Host主机CPU和内存的负担。在40Gbps的TCP/IP流量场景下,传统服务器容易因处理网络任务而耗尽CPU资源,而基于DPU的硬件卸载方案能够显著降低CPU占用率,使得服务器能够处理更多的计算任务或支持更高的网络负载。

4、加速存储性能:

通过yusur-csi提供的基于DPU的RDMA支持,相对于传统的TCP存储方案,能够实现硬件级别的性能加速。这种加速效果最低能达到2倍,最高能达到10倍,显著提升了存储系统的吞吐量和响应速度。

综上所述,基于DPU硬件卸载CNI方案通过缩短网络路径、降低资源消耗、减少网络时延以及加速存储性能等多方面优势,为云计算和虚拟化环境提供了更高效、更可靠的网络和存储解决方案。

本方案来自于中科驭数软件研发团队,团队核心由一群在云计算、数据中心架构、高性能计算领域深耕多年的业界资深架构师和技术专家组成,不仅拥有丰富的实战经验,还对行业趋势具备敏锐的洞察力,该团队致力于探索、设计、开发、推广可落地的高性能云计算解决方案,帮助最终客户加速数字化转型,提升业务效能,同时降低运营成本。

相关文章:

KubeVirt虚拟机存储及网络卸载加速解决方案

1. 方案背景 1.1. KubeVirt介绍 随着云计算和容器技术的飞速发展,Kubernetes已成为业界公认的容器编排标准,为用户提供了强大、灵活且可扩展的平台来部署和管理各类应用。然而,在企业的实际应用中,仍有许多传统应用或遗留系统难…...

JVM—对象已死?

参考资料:深入理解Java虚拟机:JVM高级特性与最佳实践(第3版)周志明 在堆里面存放着 Java 世界中几乎所有的对象实例,垃圾收集器在对堆进行回收前,第一件事情就是要确定这些对象之中哪些还“存活”着,哪些已经“死去”。 1、如何判…...

【前端面试3+1】20 css三栏布局6种实现方式、多行文本溢出怎么实现、token过期了怎么处理、【二叉树的中序遍历】

一、css三栏布局6种实现方式 1.浮动布局(Floats) .container {overflow: auto; /* 清除浮动 */ }.left, .right {width: 20%; /* 左右栏宽度 */float: left; }.middle {width: 60%; /* 中间栏宽度 */margin: 0 20%; /* 左右栏宽度 */ } 2.Flexbox .conta…...

【C++】vector介绍以及模拟实现(超级详细<=>源码并存)

欢迎来到我的Blog,点击关注哦💕 【C】vector介绍以及模拟实现 前言vector介绍 vector常见操作构造函数iteratorcapacitymodify vector模拟实现存储结构默认构造函数构造函数拷贝构造函数赋值运算符重载析构函数 容量(capacity)si…...

【Redis 进阶】主从复制(重点理解流程和原理)

在分布式系统中为了解决单点问题(某个服务器程序只有一个节点(只搞一个物理服务器来部署这个服务器程序)。可用性不高:如果这个机器挂了意味着服务就中断了;性能 / 支持的并发量比较有限)。通常会把数据复制…...

Git常用命

转自:https://blog.csdn.net/ahjxhy2010/article/details/80047553 1.查看某个文件或目录的修改历史 git log filename #查看fileName相关的commit记录 git log -p filenam # 显示每次提交的diff#只看某次提交中的某个文件变化,commit-id  文件名…...

强化学习时序差分算法之Q-learning算法——以悬崖漫步环境为例

0.简介 基于时序差分算法的强化学习算法除了Sarsa算法以外还有一种著名算法为Q-learning算法,为离线策略算法,与在线策略算法Sarsa算法相比,其时序差分更新方式变为 Q(St,At)←Q(St,At)α[Rt1γmaxaQ(St1,a)−Q(St,At)] 对于 Sarsa 来说&am…...

111推流111

推流推流...

刷题——数组中只出现一次的两个数字

数组中只出现一次的两个数字_牛客题霸_牛客网 描述 一个整型数组里除了两个数字只出现一次&#xff0c;其他的数字都出现了两次。请写程序找出这两个只出现一次的数字。 数据范围&#xff1a;数组长度 2≤n≤10002≤n≤1000&#xff0c;数组中每个数的大小 0<val≤100000…...

《剖析程序员面试“八股文”:助力、阻力还是噱头?》

#“八股文”在实际工作中是助力、阻力还是空谈&#xff1f; 作为现在各类大中小企业面试程序员时的必问内容&#xff0c;“八股文”似乎是很重要的存在。但“八股文”是否能在实际工作中发挥它“敲门砖”应有的作用呢&#xff1f;有IT人士不禁发出疑问&#xff1a;程序员面试考…...

Redis过期key的删除策略

在 Redis 中&#xff0c;设置了过期时间的键在过期时间到达后&#xff0c;并不会立即从内存中删除。如果不是&#xff0c;那过期后到底什么时候被删除呢&#xff1f; 下面对这三种删除策略进行具体分析。 立即删除&#xff1a; 立即删除能够保证内存数据的及时性和空间的有效…...

软件管理

设备挂载在目录下才可以读 挂载类似于将u盘插在电脑上 mount /dev/sr0 /opt/openeuler/ vim /etc/rc.d/rc.local #开机自运行脚本&#xff0c;将挂载命令写入脚本&#xff0c;并给这个脚本执行权限 chmod x /etc/rc.d/rc.local [rootlocalhost ~]# cd /etc/yum.repos.d/ […...

【2024】Datawhale AI夏令营 Task3笔记——Baseline2部分代码解读及初步上分思路

【2024】Datawhale AI夏令营 Task3笔记——Baseline2部分代码解读及初步上分思路 本文对可完成赛事“逻辑推理赛道&#xff1a;复杂推理能力评估”初赛的Baseline2部分关键代码进行详细解读&#xff0c;介绍Baseline2涉及的关键技术和初步上分思路。 Baseline2代码由Datawhal…...

软件测试——测试分类(超超超齐全版)

为什么要对软件测试进行分类 软件测试是软件⽣命周期中的⼀个重要环节&#xff0c;具有较⾼的复杂性&#xff0c;对于软件测试&#xff0c;可以从不同的⻆度加以分类&#xff0c;使开发者在软件开发过程中的不同层次、不同阶段对测试⼯作进⾏更好的执⾏和管理测试的分类⽅法。…...

深入解析 Go 语言 GMP 模型:并发编程的核心机制

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家&#xff1a;点击跳转到网站&#xff0c;对人工智能感兴趣的小伙伴可以点进去看看。 前言 本章是Go并发编程的起始篇章&#xff0c;在未来几篇文章中我们会…...

PHP中如何处理字符串

在PHP中&#xff0c;处理字符串是一项非常常见的任务&#xff0c;PHP提供了大量的内置函数来方便地处理字符串。以下是一些常用的字符串处理函数&#xff1a; strlen() - 返回字符串的长度。 php复制代码 $text "Hello, World!"; echo strlen($text); // 输出&…...

windows内存泄漏检查汇总

VLD(Visual Leak Detector) 下载 官方下载地址2.5 另一分支2.7 安装 点击运行安装...

yolo格式数据集之空中及地面拍摄道路病害检测7种数据集已划分好|可以直接使用|yolov5|v6|v7|v8|v9|v10通用

yolo格式数据集之空中及地面拍摄道路病害检测7种数据集已划分好|可以直接使用|yolov5|v6|v7|v8|v9|v10通用 本数据为空中及地面拍摄道路病害检测检测数据集&#xff0c;数据集数量如下&#xff1a; 总共有:33585张 训练集&#xff1a;6798张 验证集&#xff1a;3284张 测试集&a…...

[Meachines] [Easy] Mirai Raspberry树莓派默认用户登录+USB挂载文件读取

信息收集 IP AddressOpening Ports10.10.10.48TCP:22,53,80,1276,32400,32469 $ nmap -p- 10.10.10.48 --min-rate 1000 -sC -sV PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 6.7p1 Debian 5deb8u3 (protocol 2.0) | ssh-hostkey: | 1024 aa:ef:5c:…...

从零开始安装Jupyter Notebook和Jupyter Lab图文教程

前言 随着人工智能热浪&#xff08;机器学习、深度学习、卷积神经网络、强化学习、AGC以及大语言模型LLM, 真的是一浪又一浪&#xff09;的兴起&#xff0c;小伙伴们Python学习的热情达到了空前的高度。当我20年前接触Python的时候&#xff0c;做梦也没有想到Python会发展得怎么…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

云原生玩法三问:构建自定义开发环境

云原生玩法三问&#xff1a;构建自定义开发环境 引言 临时运维一个古董项目&#xff0c;无文档&#xff0c;无环境&#xff0c;无交接人&#xff0c;俗称三无。 运行设备的环境老&#xff0c;本地环境版本高&#xff0c;ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

LangFlow技术架构分析

&#x1f527; LangFlow 的可视化技术栈 前端节点编辑器 底层框架&#xff1a;基于 &#xff08;一个现代化的 React 节点绘图库&#xff09; 功能&#xff1a; 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...