当前位置: 首页 > news >正文

智能景区垃圾识别系统:基于YOLO的深度学习实现

基于深度学习的景区垃圾识别系统(UI界面+YOLOv8/v7/v6/v5代码+训练数据集)

1. 引言

景区垃圾识别是环保管理的重要任务之一。传统的人工清理方式效率低、成本高,而借助深度学习技术可以实现自动化的垃圾检测与识别,提高景区的清洁度和管理效率。

2. 项目准备
必备环境与工具
  • Python:项目开发的主要编程语言
  • Anaconda:Python数据科学平台,便于环境管理和包管理
  • YOLO (You Only Look Once):目标检测模型,选择v8/v7/v6/v5版本
  • OpenCV:计算机视觉库
  • Flask/Django:用于搭建UI界面的Web框架
安装与配置步骤
  1. 安装Python与Anaconda

    从Python官网下载安装Python:https://www.python.org/downloads/

    从Anaconda官网下载安装Anaconda:https://www.anaconda.com/products/distribution

  2. 配置YOLO环境

    安装YOLO依赖:

    pip install torch torchvision torchaudio
    pip install -U git+https://github.com/ultralytics/yolov5
    
3. 数据集准备
数据集简介

使用公开的垃圾检测数据集,包含景区多种场景的垃圾图像和标注。

数据集下载链接:https://www.kaggle.com/datasets

数据预处理
  1. 数据增强与标注

    使用LabelImg进行图像标注:https://github.com/tzutalin/labelImg

    安装LabelImg:

    pip install labelImg
    

    运行LabelImg进行图像标注:

    labelImg
    
  2. 数据集划分

    将数据集划分为训练集、验证集和测试集:

    import os
    import shutil
    import randomdef split_dataset(source_dir, train_dir, val_dir, test_dir, train_ratio=0.7, val_ratio=0.2):all_files = os.listdir(source_dir)random.shuffle(all_files)train_count = int(len(all_files) * train_ratio)val_count = int(len(all_files) * val_ratio)for i, file in enumerate(all_files):if i < train_count:shutil.move(os.path.join(source_dir, file), train_dir)elif i < train_count + val_count:shutil.move(os.path.join(source_dir, file), val_dir)else:shutil.move(os.path.join(source_dir, file), test_dir)split_dataset('data/source', 'data/train', 'data/val', 'data/test')
    
4. 模型训练
YOLO模型简介

YOLO (You Only Look Once) 是一种快速准确的目标检测模型。YOLOv8/v7/v6/v5 是不同版本的YOLO模型,性能和速度有所不同。

配置与训练
  1. 配置文件的修改

    修改YOLO配置文件:

    # example.yaml
    train: data/train
    val: data/val
    nc: 1  # number of classes (garbage)
    names: ['garbage']
    
  2. 超参数调整

    在配置文件中调整超参数,如batch size、learning rate等。

  3. 训练模型的步骤

    使用以下命令训练模型:

    python train.py --img 640 --batch 16 --epochs 50 --data example.yaml --cfg yolov5s.yaml --weights yolov5s.pt
    
训练过程中的常见问题与解决
  • 内存不足:减少batch size
  • 训练速度慢:使用GPU加速,确保CUDA正确安装
5. 模型评估与优化
模型评估指标
  • 准确率 (Accuracy)
  • 召回率 (Recall)
  • F1分数 (F1 Score)
from sklearn.metrics import accuracy_score, recall_score, f1_scorey_true = [...]  # true labels
y_pred = [...]  # predicted labelsaccuracy = accuracy_score(y_true, y_pred)
recall = recall_score(y_true, y_pred, average='macro')
f1 = f1_score(y_true, y_pred, average='macro')print(f"Accuracy: {accuracy}, Recall: {recall}, F1 Score: {f1}")
模型优化策略
  • 数据增强:使用更多的数据增强技术,如旋转、缩放、裁剪等
  • 超参数调优:通过网格搜索或贝叶斯优化找到最佳超参数
  • 使用迁移学习:使用预训练模型进行微调
6. 模型部署
Flask/Django搭建UI界面
  1. 项目结构介绍

    garbage_detection/
    ├── app.py
    ├── templates/
    │   ├── index.html
    │   └── result.html
    ├── static/
    │   └── styles.css
    └── models/└── yolov5s.pt
    
  2. 创建基础的网页模板

    • index.html

      <!DOCTYPE html>
      <html lang="en">
      <head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Garbage Detection</title><link rel="stylesheet" href="{{ url_for('static', filename='styles.css') }}">
      </head>
      <body><h1>Garbage Detection</h1><form action="/predict" method="post" enctype="multipart/form-data"><input type="file" name="file"><button type="submit">Upload</button></form>
      </body>
      </html>
      
    • result.html

      <!DOCTYPE html>
      <html lang="en">
      <head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Result</title><link rel="stylesheet" href="{{ url_for('static', filename='styles.css') }}">
      </head>
      <body><h1>Detection Result</h1><img src="{{ url_for('static', filename='uploads/' + filename) }}" alt="Uploaded Image"><p>{{ result }}</p>
      </body>
      </html>
      
后端集成
  1. 接口设计与实现

    • app.py
      from flask import Flask, request, render_template, url_for
      import os
      from werkzeug.utils import secure_filename
      import torch
      from PIL import Imageapp = Flask(__name__)
      app.config['UPLOAD_FOLDER'] = 'static/uploads/'model = torch.hub.load('ultralytics/yolov5', 'custom', path='models/yolov5s.pt')@app.route('/')
      def index():return render_template('index.html')@app.route('/predict', methods=['POST'])
      def predict():if 'file' not in request.files:return 'No file part'file = request.files['file']if file.filename == '':return 'No selected file'if file:filename = secure_filename(file.filename)filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)file.save(filepath)img = Image.open(filepath)results = model(img)results.save(save_dir=app.config['UPLOAD_FOLDER'])return render_template('result.html', filename=filename, result=results.pandas().xyxy[0].to_json(orient="records"))if __name__ == '__main__':app.run(debug=True)
      
部署模型到服务器
  1. 使用Gunicorn或其他部署工具

    pip install gunicorn
    gunicorn -w 4 app:app
    
  2. 部署到云服务器

    以AWS为例,创建EC2实例,配置安全组,上传项目文件,并使用Gunicorn运行应用。

7. 系统测试与演示
本地测试
  1. 测试用例设计

    设计多种景区场景测试系统的准确性。

  2. 测试结果分析

    记录测试结果,分析模型的准确性和误差。

在线演示
  1. 系统演示视频

    使用录屏软件录制系统的操作流程。

  2. 在线测试链接

    部署到云服务器后,提供在线测试链接供用户体验。

声明

声明:本文只是简单的项目思路,如有部署的想法,想要(UI界面+YOLOv8/v7/v6/v5代码+训练数据集+视频教学)的可以联系作者.

相关文章:

智能景区垃圾识别系统:基于YOLO的深度学习实现

基于深度学习的景区垃圾识别系统&#xff08;UI界面YOLOv8/v7/v6/v5代码训练数据集&#xff09; 1. 引言 景区垃圾识别是环保管理的重要任务之一。传统的人工清理方式效率低、成本高&#xff0c;而借助深度学习技术可以实现自动化的垃圾检测与识别&#xff0c;提高景区的清洁…...

ventoy和微pe可以共存吗?ventoy和pe共存使用教程

Ventoy新一代多系统启动U盘解决方案。国产开源U盘启动制作工具&#xff0c;支持Legacy BIOS和UEFI模式&#xff0c;理论上几乎支持任何ISO镜像文件&#xff0c;支持加载多个不同类型的ISO文件启动&#xff0c;无需反复地格式化U盘&#xff0c;插入U盘安装写入就能制作成可引导的…...

如何获取和安装SSL证书

SSL&#xff08;Secure Sockets Layer&#xff09;证书是用于加密网站服务器和客户端之间通信的一种数字证书。它通过HTTPS协议保护数据传输的安全性&#xff0c;防止数据被窃听或篡改。本文将指导您如何为您的网站获取并安装SSL证书。 步骤1&#xff1a;选择SSL证书提供商 首…...

makefile在IC设计中的使用笔记

1 makefile在IC设计中的地位 关于makefile的详细介绍可以参考第一个连接&#xff0c;里面的内容很多也很详细。但在数字IC设计中&#xff0c;并不会把所有的用法都用到&#xff0c;下面记录一下主要用到的规则。 2 IC设计涉及到的主要用法 2.1 变量的定义和使用 在makefile…...

Suno声称在受版权保护的音乐上训练模型属于“合理使用“

继美国唱片业协会&#xff08;RIAA&#xff09; 最近对音乐生成初创公司 Udio 和 Suno 提起诉讼之后&#xff0c;Suno 在周四提交的一份法庭文件中承认&#xff0c;该公司确实使用了受版权保护的歌曲来训练其人工智能模型。但它声称&#xff0c;根据合理使用原则&#xff0c;这…...

Java | Leetcode Java题解之第316题去除重复字母

题目&#xff1a; 题解&#xff1a; class Solution {public String removeDuplicateLetters(String s) {boolean[] vis new boolean[26];int[] num new int[26];for (int i 0; i < s.length(); i) {num[s.charAt(i) - a];}StringBuffer sb new StringBuffer();for (in…...

Taro学习记录

一、安装taro-cli 二、项目文件 三、项目搭建 1、Eslint配置 在项目生成的 .eslintrc 中进行配置 {"extends": ["taro/react"], //一个配置文件&#xff0c;可以被基础配置中的已启用的规则继承"parser": "babel/eslint-parser…...

Spring Cache框架详解

Spring Cache框架详解 Spring Cache是Spring框架提供的一个强大的缓存抽象层&#xff0c;旨在简化缓存技术的集成和使用。自Spring 3.1版本开始&#xff0c;Spring Cache就被引入以支持在Spring应用程序中添加缓存功能。随着Spring版本的迭代&#xff0c;Spring Cache的功能日…...

解决Html iframe 内嵌video标签导致视频无法全屏展示的问题

原因&#xff1a; 由于浏览器的安全策略所限制的。为了防止恶意网站利用全屏播放功能进行滥用或欺骗用户&#xff0c;浏览器对iframe中的视频播放做了限制。 在iframe标签中播放视频时&#xff0c;浏览器会根据安全策略阻止视频全屏播放。这是因为iframe标签中的内容被认为是第…...

谷粒商城实战笔记-110~114-全文检索-ElasticSearch-查询

文章目录 一&#xff0c;110-全文检索-ElasticSearch-进阶-两种查询方式二&#xff0c;111-全文检索-ElasticSearch-进阶-QueryDSL基本使用&match_all三&#xff0c;112-全文检索-ElasticSearch-进阶-match全文检索四&#xff0c;113-全文检索-ElasticSearch-进阶-match_ph…...

【开源】嵌入式Linux(IMX6U)应用层综合项目(1)--云平台调试APP

目录 1.简介 1.1功能介绍 1.2技术栈介绍 1.3演示视频 1.4硬件介绍 2.软件设计 2.1连接阿里云 2.2云平台调试UI 2.3Ui_main.c界面切换处理文件 2.4.main函数 3.结尾&#xff08;附网盘链接&#xff09; 1.简介 此文章并不是教程&#xff0c;只能当作笔者的学习分享&…...

AI人工智能分析王楚钦球拍被踩事件的真相

在2024年巴黎奥运会乒乓球混双决赛的热烈氛围中&#xff0c;中国队王楚钦与孙颖莎以出色的表现夺得金牌&#xff0c;然而&#xff0c;赛后发生的一起意外事件——王楚钦的球拍被踩坏&#xff0c;引起了广泛关注和热议。为了探寻这一事件的真相&#xff0c;我们可以借助AI人工智…...

C++客户端Qt开发——多线程编程(一)

多线程编程&#xff08;一&#xff09; ①QThread 在Qt中&#xff0c;多线程的处理一般是通过QThread类来实现。 QThread代表一个在应用程序中可以独立控制的线程&#xff0c;也可以和进程中的其他线程共享数据。 QThread对象管理程序中的一个控制线程。 run() 线程的入口…...

安装pnpm

安装pnpm&#xff08;Performant npm&#xff09;&#xff0c;即高性能的npm包管理工具&#xff0c;可以通过多种方式进行。以下是详细的安装步骤&#xff1a; 一、通过npm全局安装 打开命令行工具&#xff1a;在你的计算机上打开命令行工具&#xff0c;例如Windows的CMD、Pow…...

CSS平移实现双开门效果

CSS平移实现双开门效果 一共要三张图片&#xff0c;一张作为父级背景&#xff0c;两张为兄弟左右布局 父子结构布局 一张作为父级背景&#xff0c;两张为兄弟左右布局。之后添加鼠标悬停效果&#xff0c;两张子图分别从左右平移 [外链图片转存失败,源站可能有防盗链机制,建议…...

3096. 得到更多分数的最少关卡数目

3096. 得到更多分数的最少关卡数目 题目链接&#xff1a;3096. 得到更多分数的最少关卡数目 代码如下&#xff1a; class Solution { public:int minimumLevels(vector<int>& possible) {int s0;//两个玩家能得到的分数和for(int x:possible){sx0?-1:1;}int t0;/…...

AGI思考探究的意义、价值与乐趣Ⅳ

探究in context或Prompt对于LLM来说其根本意义&#xff0c;in context & Prompt Learning带给我们更深一层的提示是什么&#xff1f; 文章里的探索希望能够将in context或Prompt置身于一个更全局的视角来看待&#xff1a;将其视为在真实世界中时空认知流形所映射为数据流形…...

《数据结构》(C语言版)第1章 绪论(上)

第1章 绪论 1.1 数据结构的研究内容1.2 基本概念和术语 1.1 数据结构的研究内容 N.沃思&#xff08;Niklaus Wirth)教授提出&#xff1a; 程序算法数据结构 电子计算机的主要用途 早期&#xff1a;主要用于数值计算 后来&#xff1a;非数值计算&#xff0c;复杂的具有一定结构…...

【Pyhton】数据类型之详讲字符串(上)

本篇文章将详细讲解字符串&#xff1a; 1、定义 定义字符串时&#xff0c;字符串的内容被双引号&#xff0c;单引号&#xff0c;三单引号&#xff0c;三双引号中的其中一个被括住。 例如&#xff1a; 双引号&#xff1a; v1"haha" 单引号&#xff1a; v1hahah…...

算法小白的进阶之路(力扣6~8)

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 非常期待和您一起在这个小…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

python爬虫——气象数据爬取

一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用&#xff1a; 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests&#xff1a;发送 …...

日常一水C

多态 言简意赅&#xff1a;就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过&#xff0c;当子类和父类的函数名相同时&#xff0c;会隐藏父类的同名函数转而调用子类的同名函数&#xff0c;如果要调用父类的同名函数&#xff0c;那么就需要对父类进行引用&#…...

游戏开发中常见的战斗数值英文缩写对照表

游戏开发中常见的战斗数值英文缩写对照表 基础属性&#xff08;Basic Attributes&#xff09; 缩写英文全称中文释义常见使用场景HPHit Points / Health Points生命值角色生存状态MPMana Points / Magic Points魔法值技能释放资源SPStamina Points体力值动作消耗资源APAction…...

C#最佳实践:为何优先使用as或is而非强制转换

C#最佳实践&#xff1a;为何优先使用as或is而非强制转换 在 C# 的编程世界里&#xff0c;类型转换是我们经常会遇到的操作。就像在现实生活中&#xff0c;我们可能需要把不同形状的物品重新整理归类一样&#xff0c;在代码里&#xff0c;我们也常常需要将一个数据类型转换为另…...

React、Git、计网、发展趋势等内容——前端面试宝典(字节、小红书和美团)

React React Hook实现架构、.Hook不能在循环嵌套语句中使用 , 为什么&#xff0c;Fiber架构&#xff0c;面试向面试官介绍&#xff0c;详细解释 用户: React Hook实现架构、.Hook不能在循环嵌套语句中使用 , 为什么&#xff0c;Fiber架构&#xff0c;面试向面试官介绍&#x…...

本地部署drawDB结合内网穿透技术实现数据库远程管控方案

文章目录 前言1. Windows本地部署DrawDB2. 安装Cpolar内网穿透3. 实现公网访问DrawDB4. 固定DrawDB公网地址 前言 在数字化浪潮席卷全球的背景下&#xff0c;数据治理能力正日益成为构建现代企业核心竞争力的关键因素。无论是全球500强企业的数据中枢系统&#xff0c;还是初创…...