智能景区垃圾识别系统:基于YOLO的深度学习实现
基于深度学习的景区垃圾识别系统(UI界面+YOLOv8/v7/v6/v5代码+训练数据集)
1. 引言
景区垃圾识别是环保管理的重要任务之一。传统的人工清理方式效率低、成本高,而借助深度学习技术可以实现自动化的垃圾检测与识别,提高景区的清洁度和管理效率。
2. 项目准备
必备环境与工具
- Python:项目开发的主要编程语言
- Anaconda:Python数据科学平台,便于环境管理和包管理
- YOLO (You Only Look Once):目标检测模型,选择v8/v7/v6/v5版本
- OpenCV:计算机视觉库
- Flask/Django:用于搭建UI界面的Web框架
安装与配置步骤
-
安装Python与Anaconda
从Python官网下载安装Python:https://www.python.org/downloads/
从Anaconda官网下载安装Anaconda:https://www.anaconda.com/products/distribution
-
配置YOLO环境
安装YOLO依赖:
pip install torch torchvision torchaudio pip install -U git+https://github.com/ultralytics/yolov5
3. 数据集准备
数据集简介
使用公开的垃圾检测数据集,包含景区多种场景的垃圾图像和标注。
数据集下载链接:https://www.kaggle.com/datasets
数据预处理
-
数据增强与标注
使用LabelImg进行图像标注:https://github.com/tzutalin/labelImg
安装LabelImg:
pip install labelImg运行LabelImg进行图像标注:
labelImg -
数据集划分
将数据集划分为训练集、验证集和测试集:
import os import shutil import randomdef split_dataset(source_dir, train_dir, val_dir, test_dir, train_ratio=0.7, val_ratio=0.2):all_files = os.listdir(source_dir)random.shuffle(all_files)train_count = int(len(all_files) * train_ratio)val_count = int(len(all_files) * val_ratio)for i, file in enumerate(all_files):if i < train_count:shutil.move(os.path.join(source_dir, file), train_dir)elif i < train_count + val_count:shutil.move(os.path.join(source_dir, file), val_dir)else:shutil.move(os.path.join(source_dir, file), test_dir)split_dataset('data/source', 'data/train', 'data/val', 'data/test')
4. 模型训练
YOLO模型简介
YOLO (You Only Look Once) 是一种快速准确的目标检测模型。YOLOv8/v7/v6/v5 是不同版本的YOLO模型,性能和速度有所不同。
配置与训练
-
配置文件的修改
修改YOLO配置文件:
# example.yaml train: data/train val: data/val nc: 1 # number of classes (garbage) names: ['garbage'] -
超参数调整
在配置文件中调整超参数,如batch size、learning rate等。
-
训练模型的步骤
使用以下命令训练模型:
python train.py --img 640 --batch 16 --epochs 50 --data example.yaml --cfg yolov5s.yaml --weights yolov5s.pt
训练过程中的常见问题与解决
- 内存不足:减少batch size
- 训练速度慢:使用GPU加速,确保CUDA正确安装
5. 模型评估与优化
模型评估指标
- 准确率 (Accuracy)
- 召回率 (Recall)
- F1分数 (F1 Score)
from sklearn.metrics import accuracy_score, recall_score, f1_scorey_true = [...] # true labels
y_pred = [...] # predicted labelsaccuracy = accuracy_score(y_true, y_pred)
recall = recall_score(y_true, y_pred, average='macro')
f1 = f1_score(y_true, y_pred, average='macro')print(f"Accuracy: {accuracy}, Recall: {recall}, F1 Score: {f1}")
模型优化策略
- 数据增强:使用更多的数据增强技术,如旋转、缩放、裁剪等
- 超参数调优:通过网格搜索或贝叶斯优化找到最佳超参数
- 使用迁移学习:使用预训练模型进行微调
6. 模型部署
Flask/Django搭建UI界面
-
项目结构介绍
garbage_detection/ ├── app.py ├── templates/ │ ├── index.html │ └── result.html ├── static/ │ └── styles.css └── models/└── yolov5s.pt -
创建基础的网页模板
-
index.html
<!DOCTYPE html> <html lang="en"> <head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Garbage Detection</title><link rel="stylesheet" href="{{ url_for('static', filename='styles.css') }}"> </head> <body><h1>Garbage Detection</h1><form action="/predict" method="post" enctype="multipart/form-data"><input type="file" name="file"><button type="submit">Upload</button></form> </body> </html> -
result.html
<!DOCTYPE html> <html lang="en"> <head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Result</title><link rel="stylesheet" href="{{ url_for('static', filename='styles.css') }}"> </head> <body><h1>Detection Result</h1><img src="{{ url_for('static', filename='uploads/' + filename) }}" alt="Uploaded Image"><p>{{ result }}</p> </body> </html>
-
后端集成
-
接口设计与实现
- app.py
from flask import Flask, request, render_template, url_for import os from werkzeug.utils import secure_filename import torch from PIL import Imageapp = Flask(__name__) app.config['UPLOAD_FOLDER'] = 'static/uploads/'model = torch.hub.load('ultralytics/yolov5', 'custom', path='models/yolov5s.pt')@app.route('/') def index():return render_template('index.html')@app.route('/predict', methods=['POST']) def predict():if 'file' not in request.files:return 'No file part'file = request.files['file']if file.filename == '':return 'No selected file'if file:filename = secure_filename(file.filename)filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)file.save(filepath)img = Image.open(filepath)results = model(img)results.save(save_dir=app.config['UPLOAD_FOLDER'])return render_template('result.html', filename=filename, result=results.pandas().xyxy[0].to_json(orient="records"))if __name__ == '__main__':app.run(debug=True)
- app.py
部署模型到服务器
-
使用Gunicorn或其他部署工具
pip install gunicorn gunicorn -w 4 app:app -
部署到云服务器
以AWS为例,创建EC2实例,配置安全组,上传项目文件,并使用Gunicorn运行应用。
7. 系统测试与演示
本地测试
-
测试用例设计
设计多种景区场景测试系统的准确性。
-
测试结果分析
记录测试结果,分析模型的准确性和误差。
在线演示
-
系统演示视频
使用录屏软件录制系统的操作流程。
-
在线测试链接
部署到云服务器后,提供在线测试链接供用户体验。
声明
声明:本文只是简单的项目思路,如有部署的想法,想要(UI界面+YOLOv8/v7/v6/v5代码+训练数据集+视频教学)的可以联系作者.
相关文章:
智能景区垃圾识别系统:基于YOLO的深度学习实现
基于深度学习的景区垃圾识别系统(UI界面YOLOv8/v7/v6/v5代码训练数据集) 1. 引言 景区垃圾识别是环保管理的重要任务之一。传统的人工清理方式效率低、成本高,而借助深度学习技术可以实现自动化的垃圾检测与识别,提高景区的清洁…...
ventoy和微pe可以共存吗?ventoy和pe共存使用教程
Ventoy新一代多系统启动U盘解决方案。国产开源U盘启动制作工具,支持Legacy BIOS和UEFI模式,理论上几乎支持任何ISO镜像文件,支持加载多个不同类型的ISO文件启动,无需反复地格式化U盘,插入U盘安装写入就能制作成可引导的…...
如何获取和安装SSL证书
SSL(Secure Sockets Layer)证书是用于加密网站服务器和客户端之间通信的一种数字证书。它通过HTTPS协议保护数据传输的安全性,防止数据被窃听或篡改。本文将指导您如何为您的网站获取并安装SSL证书。 步骤1:选择SSL证书提供商 首…...
makefile在IC设计中的使用笔记
1 makefile在IC设计中的地位 关于makefile的详细介绍可以参考第一个连接,里面的内容很多也很详细。但在数字IC设计中,并不会把所有的用法都用到,下面记录一下主要用到的规则。 2 IC设计涉及到的主要用法 2.1 变量的定义和使用 在makefile…...
Suno声称在受版权保护的音乐上训练模型属于“合理使用“
继美国唱片业协会(RIAA) 最近对音乐生成初创公司 Udio 和 Suno 提起诉讼之后,Suno 在周四提交的一份法庭文件中承认,该公司确实使用了受版权保护的歌曲来训练其人工智能模型。但它声称,根据合理使用原则,这…...
Java | Leetcode Java题解之第316题去除重复字母
题目: 题解: class Solution {public String removeDuplicateLetters(String s) {boolean[] vis new boolean[26];int[] num new int[26];for (int i 0; i < s.length(); i) {num[s.charAt(i) - a];}StringBuffer sb new StringBuffer();for (in…...
Taro学习记录
一、安装taro-cli 二、项目文件 三、项目搭建 1、Eslint配置 在项目生成的 .eslintrc 中进行配置 {"extends": ["taro/react"], //一个配置文件,可以被基础配置中的已启用的规则继承"parser": "babel/eslint-parser…...
Spring Cache框架详解
Spring Cache框架详解 Spring Cache是Spring框架提供的一个强大的缓存抽象层,旨在简化缓存技术的集成和使用。自Spring 3.1版本开始,Spring Cache就被引入以支持在Spring应用程序中添加缓存功能。随着Spring版本的迭代,Spring Cache的功能日…...
解决Html iframe 内嵌video标签导致视频无法全屏展示的问题
原因: 由于浏览器的安全策略所限制的。为了防止恶意网站利用全屏播放功能进行滥用或欺骗用户,浏览器对iframe中的视频播放做了限制。 在iframe标签中播放视频时,浏览器会根据安全策略阻止视频全屏播放。这是因为iframe标签中的内容被认为是第…...
谷粒商城实战笔记-110~114-全文检索-ElasticSearch-查询
文章目录 一,110-全文检索-ElasticSearch-进阶-两种查询方式二,111-全文检索-ElasticSearch-进阶-QueryDSL基本使用&match_all三,112-全文检索-ElasticSearch-进阶-match全文检索四,113-全文检索-ElasticSearch-进阶-match_ph…...
【开源】嵌入式Linux(IMX6U)应用层综合项目(1)--云平台调试APP
目录 1.简介 1.1功能介绍 1.2技术栈介绍 1.3演示视频 1.4硬件介绍 2.软件设计 2.1连接阿里云 2.2云平台调试UI 2.3Ui_main.c界面切换处理文件 2.4.main函数 3.结尾(附网盘链接) 1.简介 此文章并不是教程,只能当作笔者的学习分享&…...
AI人工智能分析王楚钦球拍被踩事件的真相
在2024年巴黎奥运会乒乓球混双决赛的热烈氛围中,中国队王楚钦与孙颖莎以出色的表现夺得金牌,然而,赛后发生的一起意外事件——王楚钦的球拍被踩坏,引起了广泛关注和热议。为了探寻这一事件的真相,我们可以借助AI人工智…...
C++客户端Qt开发——多线程编程(一)
多线程编程(一) ①QThread 在Qt中,多线程的处理一般是通过QThread类来实现。 QThread代表一个在应用程序中可以独立控制的线程,也可以和进程中的其他线程共享数据。 QThread对象管理程序中的一个控制线程。 run() 线程的入口…...
安装pnpm
安装pnpm(Performant npm),即高性能的npm包管理工具,可以通过多种方式进行。以下是详细的安装步骤: 一、通过npm全局安装 打开命令行工具:在你的计算机上打开命令行工具,例如Windows的CMD、Pow…...
CSS平移实现双开门效果
CSS平移实现双开门效果 一共要三张图片,一张作为父级背景,两张为兄弟左右布局 父子结构布局 一张作为父级背景,两张为兄弟左右布局。之后添加鼠标悬停效果,两张子图分别从左右平移 [外链图片转存失败,源站可能有防盗链机制,建议…...
3096. 得到更多分数的最少关卡数目
3096. 得到更多分数的最少关卡数目 题目链接:3096. 得到更多分数的最少关卡数目 代码如下: class Solution { public:int minimumLevels(vector<int>& possible) {int s0;//两个玩家能得到的分数和for(int x:possible){sx0?-1:1;}int t0;/…...
AGI思考探究的意义、价值与乐趣Ⅳ
探究in context或Prompt对于LLM来说其根本意义,in context & Prompt Learning带给我们更深一层的提示是什么? 文章里的探索希望能够将in context或Prompt置身于一个更全局的视角来看待:将其视为在真实世界中时空认知流形所映射为数据流形…...
《数据结构》(C语言版)第1章 绪论(上)
第1章 绪论 1.1 数据结构的研究内容1.2 基本概念和术语 1.1 数据结构的研究内容 N.沃思(Niklaus Wirth)教授提出: 程序算法数据结构 电子计算机的主要用途 早期:主要用于数值计算 后来:非数值计算,复杂的具有一定结构…...
【Pyhton】数据类型之详讲字符串(上)
本篇文章将详细讲解字符串: 1、定义 定义字符串时,字符串的内容被双引号,单引号,三单引号,三双引号中的其中一个被括住。 例如: 双引号: v1"haha" 单引号: v1hahah…...
算法小白的进阶之路(力扣6~8)
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 非常期待和您一起在这个小…...
基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
SQL慢可能是触发了ring buffer
简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...
【Veristand】Veristand环境安装教程-Linux RT / Windows
首先声明,此教程是针对Simulink编译模型并导入Veristand中编写的,同时需要注意的是老用户编译可能用的是Veristand Model Framework,那个是历史版本,且NI不会再维护,新版本编译支持为VeriStand Model Generation Suppo…...
