体素相关的快速计算
“体素”通常是指在三维空间中具有固定尺寸和位置的小立方体单元。
体素的优点包括:
- 易于处理和计算:在计算机图形学和三维建模中,体素的结构相对简单,计算和操作较为方便。
- 能精确表示物体的内部结构:对于一些需要了解物体内部信息的应用,如医学成像、地质建模等,体素可以提供更详细和准确的内部描述。
- 适合并行计算:因为体素之间相对独立,便于在多核或分布式计算环境中进行并行处理,提高计算效率。
- 数据结构简单:存储和管理体素数据的结构相对简单,降低了数据处理的复杂性。
本文主要介绍在使用体素过程中的一些快速计算的方法
1. 求重心
一般情况下并不需要求体素的重心,可以用中心或随机采样来代替,但是在一些特殊的应用场景,还是需要重心的,而这个重心却很难计算,此处介绍一种快速方法。
通过cumsum函数高效计算voxel中所有Point的X,Y,Z坐标之和/平均值,为了方便理解,下面对该trick的计算过程进行简单演示
# 假设我们有一组Point,以及该组Point中每个点对应的voxel的index
points = np.array([[1, 1, 1], [2, 2, 2], [3, 3, 3], [4, 4, 4], [5, 5, 5]]) # 5x3
indexes = np.array([0, 1, 2, 2, 3])
# 现在我们希望计算属于同一个voxel中的所有点的x,y,z坐标的平均值,暴力方法是通过for循环来实现
# 下面给出如何利用cumsum函数来非常简单的实现上述功能# step1: 对点云的第0维进行累加求和
points_cumsum = points.cumsum(0)
# point_cumsum = [[1, 1, 1], [3, 3, 3], [6, 6, 6], [10, 10, 10], [15, 15, 15]]# step2: 计算每个点与其前一个点是否落在同一个voxel中
kept = np.ones(points.shape[0], dtype=bool)
kept[:-1] = (indexes[1:] != indexes[:-1])
# kept: [True, True, False, True, True]# step3: 计算并输出同一个voxel中所有Point的xyz坐标之和
points_voxel = points_cumsum[kept]
points_voxel = np.concatenate((points_voxel[:1], points_voxel[1:] - points_voxel[:-1]))
# points_voxel: [[1, 1, 1], [2, 2, 2], [7, 7, 7], [5, 5, 5]]
2. 语义投票
对体素中每个点的语义求均值是错误的方法。随机采样并不鲁棒,投票是比较好的方法,但投票的开销很大。此处介绍一个快速计算方法。
2.1. 开销大的方法
当体素较多时,该方法速度极慢
min_values = np.min(points, axis=0)
points_voxel_coordinates = np.round((points - min_values) / voxel_size).astype(int)
sample_voxel_coordinates, sampled_indices = np.unique(points_voxel_coordinates, axis=0, return_inverse=True)
sampled_points = sample_voxel_coordinates * voxel_size + voxel_size * 0.5sampled_semantics = []
for i in range(len(sample_voxel_coordinates)):print(f"Processing voxel {i}/{len(sample_voxel_coordinates)}")voxel_point_indices = np.where(sampled_indices == i)[0]voxel_semantics = semantics[voxel_point_indices]voxel_semantic = scipy.stats.mode(voxel_semantics)[0][0]sampled_semantics.append(voxel_semantic)sampled_semantics = np.array(sampled_semantics)
2.2. 内存大的方法
该方法速度快,但当语义的类别较多时,其占用的内存较大。
num_points = points.shape[0]min_values = np.min(points, axis=0)
points_voxel_coordinates = np.round((points - min_values) / voxel_size).astype(int)
_, sampled_indices, counts = np.unique(points_voxel_coordinates, axis=0, return_inverse=True, return_counts=True)arg_indices = np.argsort(sampled_indices)
sampled_indices = sampled_indices[arg_indices]
points = points[arg_indices, :]
points = points.cumsum(0)kept = np.ones(num_points, dtype=bool)
kept[:-1] = (sampled_indices[1:] != sampled_indices[:-1])
counts_3d = np.tile(counts, (3, 1)).Tpoints = points[kept]
points = np.concatenate((points[:1], points[1:] - points[:-1]))
points = (points / counts_3d).astype(np.float32)semantics = pointcloud.point.semantic.numpy().flatten()
semantic_matrix = np.zeros((num_points, num_semantics), dtype=bool)
semantic_matrix[np.arange(num_points), semantics] = 1semantic_matrix = semantic_matrix[arg_indices, :]
semantic_cols = []for i in range(num_semantics):semantic_col = np.cumsum(semantic_matrix[:, i].astype(np.uint32))semantic_col = semantic_col[kept]semantic_col = np.concatenate((semantic_col[:1], semantic_col[1:] - semantic_col[:-1])).astype(np.uint8)semantic_cols.append(semantic_col)semantic_cols = np.stack(semantic_cols, axis=1)
semantic_matrix = np.argmax(semantic_cols, axis=1).astype(np.uint8)
2.3. 两者兼顾的方法
该方法虽然速度上比上一方法略慢,但解决了内存问题
num_points = points.shape[0]min_values = np.min(points, axis=0)
points_voxel_coordinates = np.round((points - min_values) / voxel_size).astype(int)
_, sampled_indices, counts = np.unique(points_voxel_coordinates, axis=0, return_inverse=True, return_counts=True)arg_indices = np.argsort(sampled_indices)
sampled_indices = sampled_indices[arg_indices]
points = points[arg_indices, :]
points = points.cumsum(0)kept = np.ones(num_points, dtype=bool)
kept[:-1] = (sampled_indices[1:] != sampled_indices[:-1])
counts_3d = np.tile(counts, (3, 1)).Tpoints = points[kept]
points = np.concatenate((points[:1], points[1:] - points[:-1]))
points = (points / counts_3d).astype(np.float32)semantics = pointcloud.point.semantic.numpy().flatten().astype(np.uint8)
semantics = semantics[arg_indices]num_kept = np.sum(kept)
max_values = np.zeros(num_kept, dtype=np.uint64)
max_indices = np.zeros(num_kept, dtype=np.uint8)for i in range(num_semantics):semantic_col = np.where(semantics == i, 1, 0).astype(np.uint64)semantic_col = np.cumsum(semantic_col)semantic_col = semantic_col[kept]semantic_col = np.concatenate((semantic_col[:1], semantic_col[1:] - semantic_col[:-1])).astype(np.uint8)sign = semantic_col > max_valuesmax_values[sign] = semantic_col[sign]max_indices[sign] = i
相关文章:
体素相关的快速计算
“体素”通常是指在三维空间中具有固定尺寸和位置的小立方体单元。 体素的优点包括: 易于处理和计算:在计算机图形学和三维建模中,体素的结构相对简单,计算和操作较为方便。能精确表示物体的内部结构:对于一些需要了…...

Python 爬虫项目实战(二):爬取微博热搜榜
前言 网络爬虫(Web Crawler),也称为网页蜘蛛(Web Spider)或网页机器人(Web Bot),是一种按照既定规则自动浏览网络并提取信息的程序。爬虫的主要用途包括数据采集、网络索引、内容抓…...

文件解析漏洞复现
一、IIS 6.X 1.在网站目录创建文件夹名为xxx.asp/xxx.asa 文件夹,里面的任意文件都会被当作asp文件执行 创建1.asp 访问 2.ooo.asp.jpg会被当做asp文件执行 创建一个ooo.asp;.jpg 访问 二、IIS 7.X 上传1.jpg文件在网址后/.php可以成功执行 写一个1.jpg文件内容…...
git push报错 pre-receive hook declined
今天使用git提交的代码的时候,不然报错 pre-receive hook declined提交不上去,昨天还好好的。 经过检查发现,原来对应的分支被leader设置成受保护分支了,导致代码提交不上去。 然后在git管理平台取消分支保护,或者将我…...
打造个性化代码审查工具:在Perl中实现自定义审查的艺术
打造个性化代码审查工具:在Perl中实现自定义审查的艺术 代码审查是软件开发过程中的关键环节,它有助于提高代码质量和发现潜在缺陷。Perl作为一种灵活的编程语言,提供了丰富的特性,使得在Perl中实现自定义的代码审查工具成为可能…...

RabbitMq架构原理剖析及应用
文章目录 RabbitMQ 架构组件1. **Broker** (Broker Server)2. **Exchange**3. **Queue**4. **Producer** (消息生产者)5. **Consumer** (消息消费者)6. **Virtual Hosts** (虚拟主机) 工作流程内部原理1. **队列管理**2. **集群**3. **持久化与内存**4. **性能优化** 高级特性1…...
c# 对接第三方接口实现签名
官网文档要求如下: Sign算法说明 举例:假设请求参数键值对如下 appkey : test2-xx page_no : 0 end_time : 2016-08-01 13:00:00 start_time : 2016-08-01 12:00:00 page_size : 40 sid : test2 timestamp : 1470042310 第一步 对数所有请求参数按照…...

数学建模评价类模型—层次分析法(无数据情况下)
目录 前言 一、评价类问题概述 二、AHP建模流程 1、过程描述 2、层次分析法—Matlab代码 三、权重计算 1、算术平均法 2、几何平均法 3、特征值法 目录 文章目录 前言 一、评价类问题概述 二、AHP建模流程 1、过程描述 2、层次分析法—Matlab代码 三、权重计算 算术平均法 前言…...

模拟实现strcat(字符串追加)
1.我们要知道stcat的作用是什么,字符串追加。 2.我们进行模仿,我们先将arr1不断,直到“\0”,我们加在后面。 //模拟实现strcat(字符串追加) char* my_strcat(char* arr1, const char* arr2) {assert(arr1 && arr2);char ret arr1;…...
HTTP简单概述
一. HTTP HTTP(HyperText Transfer Protocol)是用于在客户端和服务器之间传输超文本数据(如HTML)的应用层协议。它是万维网的基础协议,定义了浏览器和服务器之间如何请求和传输文档。HTTP有多个版本,每个版…...
掌握PyCharm代码片段管理器:提升编码效率的秘诀
掌握PyCharm代码片段管理器:提升编码效率的秘诀 PyCharm作为业界领先的集成开发环境(IDE),提供了许多便利的功能来提升开发者的编码效率,其中之一就是代码片段管理器。代码片段管理器允许开发者保存、管理和重用代码模…...

MyBatis动态代理和映射器
目录 1、映射器简介 (1)什么是mapper动态代理? (2)动态代理的规范 (3)如何使用动态代理 (4)为什么学映射器 (5)映射器与接口 (…...

ShardingSphere中的ShardingJDBC常见分片算法的实现
文章目录 ShardingJDBC快速入门修改雪花算法和分表策略核心概念分片算法简单INLINE分片算法STANDARD标准分片算法COMPLEX_INLINE复杂分片算法CLASS_BASED自定义分片算法HINT_INLINE强制分片算法 注意事项 ShardingJDBC Git地址 快速入门 现在我存在两个数据库,并…...

SpringBoot整合Flink CDC实时同步postgresql变更数据,基于WAL日志
SpringBoot整合Flink CDC实时同步postgresql变更数据,基于WAL日志 一、前言二、技术介绍(Flink CDC)1、Flink CDC2、Postgres CDC 三、准备工作四、代码示例五、总结 一、前言 在工作中经常会遇到要实时获取数据库(postgresql、m…...
ThinkPHP事件的使用
技术说明 1.ThinkPHP版本:支持6.0、8.0 2.使用场景:用户登陆后日志记录、通知消息发送等主流程、次流程分离等场景 3.说明:网上很多帖子说的不明不白的,建议大家自己手动尝试总结一下 4.事件手动绑定的时候,一定要…...

【Nuxt】服务端渲染 SSR
SSR 概述 服务器端渲染全称是:Server Side Render,在服务器端渲染页面,并将渲染好HTML返回给浏览器呈现。 SSR应用的页面是在服务端渲染的,用户每请求一个SSR页面都会先在服务端进行渲染,然后将渲染好的页面…...

Spring Boot整合WebSocket
说明:本文介绍如何在Spirng Boot中整合WebSocket,WebSocket介绍,参考下面这篇文章: WebSocket 原始方式 原始方式,指的是使用Spring Boot自己整合的方式,导入的是下面这个依赖 <dependency><g…...

《LeetCode热题100》---<5.③普通数组篇五道>
本篇博客讲解LeetCode热题100道普通数组篇中的五道题 第五道:缺失的第一个正数(困难) 第五道:缺失的第一个正数(困难) 方法一:将数组视为哈希表 class Solution {public int firstMissingPosi…...

Cocos Creator文档学习记录
Cocos Creator文档学习记录 一、什么是Cocos Creator 官方文档链接:Hello World | Cocos Creator 百度百科:Cocos Creator_百度百科 Cocos Creator包括开发和调试、商业化 SDK 的集成、多平台发布、测试、上线这一整套工作流程,可多次的迭…...

插入数据优化 ---大批量数据插入建议使用load
一.insert优化 1.批量插入 2.手动提交事务 3.主键顺序插入 二.大批量插入数据 如果一次性需要插入大批量数据,使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令进行插入。操作如下 1.客户端连接服务端时,加入参数 --local-infine mysql --local-infine…...

C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用
1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...

算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...