进程的虚拟内存地址(C++程序的内存分区)
严谨的说法:
一个C、C++程序实际就是一个进程,那么C++的内存分区,实际上就是一个进程的内存分区,这样的话就可以分为两个大模块,从上往下,也就是0地址一直往下,假如是x86的32位Linux系统,那么一个进程的地址,我们也称为进程的虚拟地址(因为一个程序的内存是不可能直接加载到物理内存中的,所以我们说是虚拟的),总共分到的内存就是2^32bit也就是4G,其中默认3G是用户空间,1G是内核空间(这个空间可以通过配置文件调整)。
从0x00000000到0x08048000这一段空间就是受保护的内存块(不能访问),我们所说的nullptr就是指向这里。
接着往下就是.text和.rodata段,其中.text段就是存放程序编译产生的汇编语言运行的地方,汇编语言我也称为指令,.text段不可写,实际上一个编程语言的程序,最终产生的结果就是两部分,一部分是指令,另一部分是数据,.rodata段存放的是常量,同样不可写。
再往下就是.data段,.data段存放初始化了的变量,往下就是.bss段,这里存放的是未初始化的变量和初始化为0的变量,在系统编译过程中,.bss段的变量都会默认初始化为0。
再往下就是.heap段,里面就是动态分配出来的内存,再往下是共享段,里面用来加载共享库,比如.dll和.so文件。
接着往下就是.stack段,用来给执行的函数分配内存(需要注意的是,函数里面的变量的内存确实在栈段,但是代码编译的指令在.text段中,比如int a=10;,这句话的指令在.text中,但是int的内存在栈里面)。
接着往下就是存放命令行参数和环境变量的内存段,命令行参数就比如编译的时候指定一些参数,这时候就在这个段里面,系统库的路径就是环境变量的一种,比如Windows的Path。
最后一段就是内核空间,里面有ZONE_DMA、ZONE_NORMAL、ZONE_HIGHMEM三个段。
ZONE_DMA:这个区域包含了物理地址在 0 到 16MB 之间的内存。这个区域通常用于与设备进行 DMA(直接内存访问)交互,因为某些设备只能访问这个范围内的内存。在一些系统中,这个区域也可以包含一些内核代码和数据。
ZONE_NORMAL:这个区域包含了物理地址在 16MB 到 896MB 之间的内存。这是系统中最常见的内存区域,用于存放大多数的内核代码和数据,以及用户空间的进程和数据。
ZONE_HIGHMEM:这个区域包含了物理地址在 896MB 之后的内存,于管理物理内存超过 896MB 的区域。在早期的 32 位体系结构中,由于地址总线的限制,物理地址空间无法直接访问超过 896MB 的内存。因此,为了能够充分利用系统中超过 896MB 的内存,Linux 内核引入了 ZONE_HIGHMEM 区域。
最后需要注意的是,一个进程的用户空间是私有的,也就说,每个进程都有属于自己的3G用户空间,但是内核空间是共享的,这也是为什么进程间的通信这么麻烦的原因,只能通过操作系统的接口进行通信,比如管道和套接字等。

不严谨的说法:
一个C、C++程序的内存分区主要有5个,分别是堆区、栈区、全局/静态区、常量存储区和程序代码区。
栈:在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。
堆:就是那些由 new分配的内存块,他们的释放编译器不去管,由我们的应用程序去控制,一般一个new就要对应一个 delete。如果程序员没有释放掉,那么在程序结束后,操作系统会自动回收。
全局/静态存储区:全局变量和静态变量被分配到同一块内存中,在以前的C语言中,全局变量和静态变量又分为初始化的和未初始化的,在C++里面没有这个区分了,它们共同占用同一块内存区,在该区定义的变量若没有初始化,则会被自动初始化,例如int型变量自动初始为0。
常量存储区:这是一块比较特殊的存储区,这里面存放的是常量,不允许修改。
程序代码区:存放函数体的二进制代码。
相关文章:
进程的虚拟内存地址(C++程序的内存分区)
严谨的说法: 一个C、C程序实际就是一个进程,那么C的内存分区,实际上就是一个进程的内存分区,这样的话就可以分为两个大模块,从上往下,也就是0地址一直往下,假如是x86的32位Linux系统,…...
英特尔移除超线程与AMD多线程性能对比
#### 英特尔Lunar Lake架构取消超线程 在英特尔宣布Lunar Lake架构时,一个令人惊讶的消息是下一代轻薄优化架构将移除Hyper-Threading(超线程,简称SMT)。而AMD最新的Zen 5/Zen5C多线程基准测试结果显示,该特性依然为A…...
定期自动巡检,及时发现机房运维管理中的潜在问题
随着信息化技术的迅猛发展,机房作为企业数据处理与存储的核心场所,其运维管理的复杂性和挑战性也与日俱增。为确保机房设备的稳定运行和业务的连续性,运维团队必须定期进行全面的巡检。然而,传统的手工巡检方式不仅效率低下&#…...
八股文(一)
1. 为什么不使用本地缓存,而使用Redis? Redis相比于本地缓存(如JVM中的缓存)有以下几个显著优势: 高性能与低延迟:Redis是一个基于内存的数据库,其读写性能非常高,通常可以达到几万…...
灵茶八题 - 子数组 ^w^
灵茶八题 - 子数组 w 题目描述 给你一个长为 n n n 的数组 a a a,输出它的所有连续子数组的异或和的异或和。 例如 a [ 1 , 3 ] a[1,3] a[1,3] 有三个连续子数组 [ 1 ] , [ 3 ] , [ 1 , 3 ] [1],[3],[1,3] [1],[3],[1,3],异或和分别为 1 , 3 , …...
git clone private repo
Create personal access token Clone repo $ git clone https://<user_name>:<personal_access_tokens>github.com/<user_name>/<repo_name>.git...
vue3+ts+pinia+vant-项目搭建
1.pnpm介绍 npm和pnpm都是JavaScript的包管理工具,用于自动化安装、配置、更新和卸载npm包依赖。 pnpm节省了大量的磁盘空间并提高了安装速度:使用一个内容寻址的文件存储方式,如果多个项目使用相同的包版本,pnpm会存储单个副本…...
自动化测试概念篇
目录 一、自动化 1.1 自动化概念 1.2 自动化分类 1.3 自动化测试金字塔 二、web自动化测试 2.1 驱动 2.2 安装驱动管理 三、selenium 3.1 ⼀个简单的web自动化示例 3.2 selenium驱动浏览器的工作原理 一、自动化 1.1 自动化概念 在生活中: 自动洒水机&am…...
Mojo值的生命周期(Life of a value)详解
到目前为止,我们已经解释了 Mojo 如何允许您使用 Mojo 的所有权模型构建内存安全的高性能代码而无需手动管理内存。但是,Mojo 是为 系统编程而设计的,这通常需要对自定义数据类型进行手动内存管理。因此,Mojo 允许您根据需要执行此操作。需要明确的是,Mojo 没有引用计数器…...
java对接kimi详细说明,附完整项目
需求: 使用java封装kimi接口为http接口,并把调用kimi时的传参和返回数据,保存到mysql数据库中 自己记录一下,以做备忘。 具体步骤如下: 1.申请apiKey 访问:Moonshot AI - 开放平台使用手机号手机号验证…...
鸿蒙媒体开发【基于AVCodec能力的视频编解码】音频和视频
基于AVCodec能力的视频编解码 介绍 本实例基于AVCodec能力,提供基于视频编解码的视频播放和录制的功能。 视频播放的主要流程是将视频文件通过解封装->解码->送显/播放。视频录制的主要流程是相机采集->编码->封装成mp4文件。 播放支持的原子能力规…...
django集成pytest进行自动化单元测试实战
文章目录 一、引入pytest相关的包二、配置pytest1、将django的配置区分测试环境、开发环境和生产环境2、配置pytest 三、编写测试用例1、业务测试2、接口测试 四、进行测试 在Django项目中集成Pytest进行单元测试可以提高测试的灵活性和效率,相比于Django自带的测试…...
48天笔试训练错题——day40
目录 选择题 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 编程题 1. 发邮件 2. 最长上升子序列 选择题 1. DNS 劫持又称域名劫持,是指在劫持的网络范围内拦截域名解析的请求,分析请求的域名,把审查范围以外的请求放行,否则返回…...
LabVIEW在DCS中的优势
DCS(Distributed Control System,分布式控制系统)是一种用于工业过程控制的自动化系统。它将控制任务分散到多个控制单元中,通过网络连接和协调这些单元来实现对整个过程的监控和控制。DCS通常用于大型工业设施,如化工…...
英特尔:从硅谷创业到全球科技巨头
在科技行业,英特尔不仅是一个品牌,更是一种精神的象征。自1968年成立以来,英特尔经历了从初创企业到全球半导体产业领导者的华丽转变,其发展历程是科技创新与市场战略完美结合的典范。本文将深入探讨英特尔的发展历程,…...
生物计算与纳米技术:交汇前沿的科学领域
在当今科技迅猛发展的时代,生物计算和纳米技术作为前沿科技领域的两个重要方向,正在逐渐融合并带来深远的影响。生物计算涉及使用生物系统进行计算和数据存储,而纳米技术则关注制造极小尺度的电子器件和材料科学。本文将深入探讨这两个领域的…...
C#中栈和队列
在C#中,Stack和Queue是两种不同的集合类型,它们用于实现后进先出(LIFO)和先进先出(FIFO)的数据结构。 Stack(堆栈) Stack是一个后进先出的集合,这意味着最后一个添加到堆…...
技战法丨攻防演练防御——纵深、联动、诱捕(可搬运、可cv)
演习活动经过近几年的发展,攻击方的专业水平已大幅提高,逐渐呈现出隐秘化、APT化的趋势。其利用渗透技术对目标系统做深入探测,不断挖掘防守方网络系统的薄弱环节,这就要求防守方构建立体式纵深防护体系来抵御入侵。同时ÿ…...
1、 window平台opencv下载编译, 基于cmake和QT工具链
1. 环境准备,源码下载 1.1 前置环境 qt 下载安装cmake 安装,可参考: https://blog.csdn.net/qq_51355375/article/details/139186681 1.2 opencv 源码下载 官网地址: https://opencv.org/releases/ 下载源码: 2 …...
C++20三向比较运算符详解
三向比较运算符可以用于确定两个值的大小顺序,也被称为太空飞船操作符。使用单个表达式,它可以告诉一个值是否等于,小于或大于另一个值。 它返回的是类枚举(enumeration-like)类型,定义在 <compare> …...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...
Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...
