当前位置: 首页 > news >正文

本地部署 Llama-3-EvoVLM-JP-v2

本地部署 Llama-3-EvoVLM-JP-v2

  • 0. 引言
  • 1. 关于 Llama-3-EvoVLM-JP-v2
  • 2. 本地部署
    • 2-0. 克隆代码
    • 2-1. 安装依赖模块
    • 2-2. 创建 Web UI
    • 2-3.启动 Web UI
    • 2-4. 访问 Web UI

0. 引言

Sakana AI 提出了一种称为进化模型合并的方法,并使用该方法创建大规模语言模型(LLM )、视觉语言模型(VLM)和图像生成模型,他们创建了具有各种功能的合并模型。这次,他们发布了一个新的日本 VLM,Llama-3-EvoVLM-JP-v2,它利用进化模型合并来实现多个图像的问答。此外,为了评估构建的模型,他们还将发布一个数据集:日语多图像视觉问答(JA-Multi-Image-VQA),以评估用日语回答有关多个图像的问题的能力。

1. 关于 Llama-3-EvoVLM-JP-v2

VLM研究LLM它是发展最快的领域之一。最近,VLM的研究不断取得进展,不仅提高了单图像描绘和问答的性能,而且还具备处理视频和多图像的能力。另一方面,这种新型的VLM主要是在英语国家开发的,在非英语国家仍然基本上不存在。日语也是如此;虽然已经开发了几种日语VLM,但这种类型的尖端VLM仍然不多。因此,Sakana AI 使用进化模型融合来创建这种新型的英语 VLM 和日语 VLM。他们认为通过合并这些LLM,他们可以快速构建一个尖端的日本 VLM。

在构建新的VLM时,底层模型是开源模型。LLM其中,他们选择了Llama-3,它具有高性能,并且各种额外训练的模型都是公开的。有几种使用 Llama-3 创建的高性能 VLM,但Mantis-8B-SigLIP-Llama-3是一种前所未有的 VLM,可以将输入图像放置在我选择的输入文本中的任何位置。高性能日语培训,帮助学生获得日语能力。LLM他们使用Llama-3-ELYZA-JP-8B 。首先,通过合并这两个模型,他们成功构建了“可以处理多个图像的日本 VLM”。此外,他们还添加了一个名为Bunny-v1.1-Llama-3-8B-V的高性能英文VLM来增强图像渲染能力。LLM这些部件也被添加到合并中。

2. 本地部署

2-0. 克隆代码

git clone https://huggingface.co/spaces/SakanaAI/Llama-3-EvoVLM-JP-v2; cd Llama-3-EvoVLM-JP-v2

2-1. 安装依赖模块

pip install git+https://github.com/TIGER-AI-Lab/Mantis.git

2-2. 创建 Web UI

# webui.py
import gradio as gr
import time
import subprocessimport torchfrom models.mllava import (MLlavaProcessor,LlavaForConditionalGeneration,prepare_inputs,
)
from models.conversation import Conversation, SeparatorStyle
from transformers import TextIteratorStreamer
from transformers.utils import is_flash_attn_2_available
from threading import Threaddevice = "cuda" if torch.cuda.is_available() else "cpu"
IMAGE_TOKEN = "<image>"
generation_kwargs = {"max_new_tokens": 1024,"num_beams": 1,"do_sample": False,"no_repeat_ngram_size": 3,
}if not is_flash_attn_2_available():subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},shell=True)processor = MLlavaProcessor.from_pretrained("TIGER-Lab/Mantis-8B-siglip-llama3")
processor.tokenizer.pad_token = processor.tokenizer.eos_tokenmodel = LlavaForConditionalGeneration.from_pretrained("SakanaAI/Llama-3-EvoVLM-JP-v2",torch_dtype=torch.float16,attn_implementation="flash_attention_2",device_map=device,
).eval()# Set the system prompt
conv_template = Conversation(system="<|start_header_id|>system<|end_header_id|>\n\nあなたは誠実で優秀な日本人のアシスタントです。特に指示が無い場合は、常に日本語で回答してください。",roles=("user", "assistant"),messages=(),offset=0,sep_style=SeparatorStyle.LLAMA_3,sep="<|eot_id|>",
)def get_chat_messages(history):chat_history = []user_role = conv_template.roles[0]assistant_role = conv_template.roles[1]for i, message in enumerate(history):if isinstance(message[0], str):chat_history.append({"role": user_role, "text": message[0]})if i != len(history) - 1:assert message[1], "The bot message is not provided, internal error"chat_history.append({"role": assistant_role, "text": message[1]})else:assert not message[1], "the bot message internal error, get: {}".format(message[1])chat_history.append({"role": assistant_role, "text": ""})return chat_historydef get_chat_images(history):images = []for message in history:if isinstance(message[0], tuple):images.extend(message[0])return imagesdef add_message(history, message):return history, gr.MultimodalTextbox(interactive=False)def bot(history, message):images = message["files"] if message["files"] else Nonetext = message["text"].strip()if not text:raise gr.Error("You must enter a message!")num_image_tokens = text.count(IMAGE_TOKEN)# modify textif images and num_image_tokens < len(images):if num_image_tokens != 0:gr.Warning("The number of images uploaded is more than the number of <image> placeholders in the text. Will automatically prepend <image> to the text.")# prefix image tokenstext = IMAGE_TOKEN * (len(images) - num_image_tokens) + textif images and num_image_tokens > len(images):raise gr.Error("The number of images uploaded is less than the number of <image> placeholders in the text!")current_messages = []if images:current_messages += [[(image,), None] for image in images]if text:current_messages += [[text, None]]current_history = history + current_messages# chat_messages = get_chat_messages(current_history)# chat_images = get_chat_images(current_history)chat_messages = get_chat_messages(current_messages)chat_images = get_chat_images(current_messages)# Generate!inputs = prepare_inputs(None, chat_images, model, processor, history=chat_messages, **generation_kwargs)streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)inputs["streamer"] = streamerthread = Thread(target=model.generate, kwargs=inputs)thread.start()buffer = ""for new_text in streamer:buffer += new_texttime.sleep(0.01)# yield buffercurrent_history[-1] = (current_history[-1][0], buffer)yield current_historyexamples = [{"text": "1番目と2番目の画像に写っている動物の違いは何ですか?簡潔に説明してください。","files": ["./examples/image_0.jpg", "./examples/image_1.jpg"],},{"text": "2枚の写真について、簡単にそれぞれ説明してください。","files": ["./examples/image_2.jpg", "./examples/image_3.jpg"],},
]with gr.Blocks(fill_height=True) as demo:chatbot = gr.Chatbot(elem_id="chatbot",bubble_full_width=False,scale=1,)chat_input = gr.MultimodalTextbox(interactive=True,file_types=["image"],placeholder="Enter message or upload images. Please use <image> to indicate the position of uploaded images",show_label=True,render=True,)examples = gr.Examples(examples, [chat_input], [])chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])bot_msg = chat_msg.then(bot, [chatbot, chat_input], chatbot, api_name="bot_response")bot_msg.then(lambda: gr.MultimodalTextbox(value=None, interactive=True), None, [chat_input])demo.queue().launch()

2-3.启动 Web UI

python webui.py

2-4. 访问 Web UI

使用浏览器打开 http://localhost:7860,

在这里插入图片描述
完结!

相关文章:

本地部署 Llama-3-EvoVLM-JP-v2

本地部署 Llama-3-EvoVLM-JP-v2 0. 引言1. 关于 Llama-3-EvoVLM-JP-v22. 本地部署2-0. 克隆代码2-1. 安装依赖模块2-2. 创建 Web UI2-3.启动 Web UI2-4. 访问 Web UI 0. 引言 Sakana AI 提出了一种称为进化模型合并的方法&#xff0c;并使用该方法创建大规模语言模型&#xff…...

Evaluating the Generation Capabilities of Large Chinese Language Models

文章目录 题目摘要相关工作CG-Eval实验 题目 评估大型中文语言模型的生成能力 论文地址&#xff1a;https://arxiv.org/abs/2308.04823 项目地址&#xff1a;http://cgeval.besteasy.com/ 摘要 本文介绍了 CG-Eval&#xff0c;这是有史以来第一个全面的自动化评估框架&#xf…...

YOLOv8添加注意力模块并测试和训练

YOLOv8添加注意力模块并测试和训练 参考bilibili视频 yolov8代码库中写好了注意力模块&#xff0c;但是yolov8的yaml文件中并没用使用它&#xff0c;如下图的通道注意力和空间注意力以及两者的结合CBAM&#xff0c;打开conv.py文件可以看到&#xff0c;其中包含了各种卷积块的…...

「Unity3D」自动布局LayoutElement、ContentSizeFitter、AspectRatioFitter、GridLayoutGroup

布局元素与布局控制器 布局元素实现ILayoutElement接口&#xff0c;布局控制器实现ILayoutController接口&#xff0c;后者根据前者的属性控制具体布局——有些布局控制器也是布局元素&#xff0c;即同时实现这两个接口&#xff0c;如LayoutGroup。 public interface ILayout…...

【Golang 面试 - 进阶题】每日 3 题(十六)

✍个人博客&#xff1a;Pandaconda-CSDN博客 &#x1f4e3;专栏地址&#xff1a;http://t.csdnimg.cn/UWz06 &#x1f4da;专栏简介&#xff1a;在这个专栏中&#xff0c;我将会分享 Golang 面试中常见的面试题给大家~ ❤️如果有收获的话&#xff0c;欢迎点赞&#x1f44d;收藏…...

Redis2

为什么Redis要给缓存数据设置过期时间&#xff1f; 内存是有限的&#xff0c;如果缓存中的所有数据都是一直保存&#xff0c;很容易OOM Redis如何判断数据是否过期&#xff1f; 通过过期字典来保存数据的过期时间 过期删除策略 Redis采用的是定期删除惰性删除 Redis内存淘…...

C语言--函数

1. 函数定义 语法&#xff1a; 类型标识符 函数名&#xff08;形式参数&#xff09; {函数体代码 } &#xff08;1&#xff09;类型标识符 --- 数据类型&#xff08;函数要带出的结果的类型&#xff09; 注&#xff1a;数组类型不能做函数返回结果的类型&#xff0c;如果函…...

Shell 编程的高级技巧和实战应用

第一步&#xff1a;高级函数和模块化设计 1.1 高级函数设计 探讨函数的参数处理和默认值设置。示例&#xff1a;实现一个可以处理可选参数的函数。 #!/bin/bashgreet() {local name${1:-"World"} # 如果没有提供参数&#xff0c;使用默认值 "World"ech…...

VMWare虚拟机如何连接U盘

检查配置 1&#xff09;Win R键&#xff0c;输入services.msc&#xff0c;打开服务。 2&#xff09;将AMware USB Arbitration Services 服务开启&#xff0c;并设置为自动启动&#xff1b; 连接U盘 目前作者了解有两种连接方式&#xff0c;如有其他连接方式&#xff0c;欢…...

【学习笔记】后缀自动机(SAM)

前言 之前对后缀自动机的理解太浅薄了&#xff0c;故打算重新写一篇。 后缀自动机是什么 后缀自动机是一个字符串的所有后缀建起来的自动机。它把所有子串&#xff08;后缀的前缀&#xff09;用 O ( n ) O(n) O(n) 的空间装了起来。后缀自动机的边会构成一个 D A G DAG DA…...

Godot的节点与场景

要深入的理解节点与场景&#xff0c;我们需要跳出这两个概念来看他。说的再直白一些godot本质就是一个场景编辑器&#xff01; 场景的概念应该在我们平时看电影看电视时会经常提到&#xff0c;比如某一个打斗的场景&#xff0c;这个场景可能会被设在某一个街道&#xff0c;那么…...

C++ 学习(2) ---- std::cout 格式化输出

目录 std::cout 格式化输出简介使用成员函数使用流操作算子 std::cout 格式化输出简介 C 通常使用cout输出数据&#xff0c;和printf()函数相比&#xff0c;cout实现格式化输出数据的方式更加多样化&#xff1b; 一方面&#xff0c;cout 作为 ostream 类的对象&#xff0c;该类…...

前端拿不到Long类型成员变量,用@JsonSerialize(using = ToStringSerializer.class)序列化一下

EqualsAndHashCode(callSuper true) Data TableName("la_school_business") Schema(description "商务负责人表") public class SchoolBusiness extends BaseEntity {private static final long serialVersionUID -7124481085999629236L;/*** 商务负责人…...

JWT登录校验流程

jwt令牌的基本概念&#xff1a; 1. JWT&#xff08;JSON Web Token&#xff09; 定义&#xff1a;JWT 是一种开放标准&#xff08;RFC 7519&#xff09;&#xff0c;用于在各方之间作为 JSON 对象安全地传输信息。它可以被验证和信任&#xff0c;因为它是数字签名的。结构&am…...

yarn安装和部署

文章目录 概述安装部署1.构建项目2.测试3.清理构建目录 小结 概述 yarn是一个快速、可靠和安全的JavaScript包管理工具&#xff0c;由Facebook开发。它被设计用来替代npm&#xff08;Node Package Manager&#xff09;&#xff0c;尽管它与npm在很多方面兼容。yarn提供了以下一…...

Visual Studio的安装教程与使用方法

Visual Studio的安装教程与使用方法 一、Visual Studio的安装教程 1. 准备工作 确认系统要求&#xff1a; 在开始安装Visual Studio之前&#xff0c;请确保您的计算机满足Visual Studio的系统要求这。包括操作系统版本、内存、硬盘空间等。您可以在Visual Studio的官方网站…...

一键换装软件哪个好?6个换装工具让你秒变穿搭达人

#紫色跑道的city穿搭#火了&#xff0c;很多人都开始打卡各种紫色穿搭&#xff0c;展示自己的时尚态度。 但对于没有时间或金钱去精心搭配的我们来说&#xff0c;有没有一种更简单、更快捷的方式&#xff0c;让我们也能轻松跟上潮流呢&#xff1f; 当然有&#xff01;今天&…...

【EtherCAT】Windows+Visual Studio配置SOEM主站——源码配置

目录 一、准备工作 1. Visual Studio 2022 2. Npcap 1.79 3. SOEM源码 二、源码部署 1. 新建Visual Studio工程 2. 创建文件夹 3. 创建主函数 4. 复制源代码 5. 删除无关项 6. 将soem源码添加进工程 7. 添加soem头文件 8. 配置头文件路径 9. 配置静态库和静态库路…...

GPTPDF深度解析:开源文档处理技术全攻略

GPTPDF深度解析&#xff1a;开源文档处理技术全攻略 在数字化信息时代&#xff0c;PDF文件因其稳定性和跨平台兼容性&#xff0c;已成为学术交流、技术文档和电子书籍等领域的首选格式。然而&#xff0c;PDF文档的处理和内容提取一直是一个难题。随着人工智能技术的飞速发展&a…...

网络学习:应用层DNS域名解析协议

目录 一、简介 二、工作流程 一、简介 DNS( Domain Name System)是“域名系统”的英文缩写&#xff0c;是一种组织成域层次结构的计算机和网络服务命名系统&#xff0c;它用于TCP/IP网络&#xff0c;它所提供的服务是用来将主机名和域名转换为IP地址的工作。 同时,DNS…...

7.怎么配置一个axios来拦截前后端请求

首先创建一个axios.js文件 导入我们所需要的依赖 import axios from "axios"; import Element from element-ui import router from "./router"; 设置请求头和它的类型和地址 注意先注释这个url,还没有解决跨域问题,不然会出现跨域 // axios.defaults.…...

Day17_1--AJAX学习之GET/POST传参

AJAX 简介 AJAX 是一种在无需重新加载整个网页的情况下&#xff0c;能够更新部分网页的技术。其实AJAX就可以理解为就是JS。通过AJAX也就实现了前后端分离&#xff0c;前端只写页面&#xff0c;后端生成数据&#xff01; 现在开始通过实例学习&#xff1a; 1--GET传参 <!…...

golang国内proxy设置

go env -w GOPROXYhttps://goproxy.cn,direct经常使用的两个, goproxy.cn 和 goproxy.io 连接分别是 https://goproxy.cn https://goproxy.io 如果遇到某些包下载不下来的情况&#xff0c;可尝试更换数据源 更推荐使用https://goproxy.cn 速度快&#xff0c;缓存的包多 提醒…...

全网最适合入门的面向对象编程教程:31 Python的内置数据类型-对象Object和类型Type

全网最适合入门的面向对象编程教程&#xff1a;31 Python 的内置数据类型-对象 Object 和类型 Type 摘要&#xff1a; Python 中的对象和类型是一个非常重要的概念。在 Python 中,一切都是对象,包括数字、字符串、列表等,每个对象都有自己的类型。 原文链接&#xff1a; Fre…...

【mongodb】mongodb副本集的搭建和使用

本站以分享各种运维经验和运维所需要的技能为主 《python零基础入门》&#xff1a;python零基础入门学习 《python运维脚本》&#xff1a; python运维脚本实践 《shell》&#xff1a;shell学习 《terraform》持续更新中&#xff1a;terraform_Aws学习零基础入门到最佳实战 《k8…...

Java后端面试复习7.24

lock加锁解锁尝试获取锁方法lock底层基于什么实现lock和lock的底层实现分别面向什么用户lock和synchronized异同如何选择合适的锁ReentrantLock如何实现冲入内部类三个公平和非公平获取锁怎么实现的RL默认公平还是非公平&#xff0c;构造参数ReentrantRedaWriteLock的特性什么是…...

前端 HTML 概述

目录 1. HTML概述 1.1 超文本标记语言 1.2 标签 2. HTML 解析与编辑 2.1 解析与访问 2.2 编辑 html文件 1. HTML概述 HTML&#xff08; Hyper Text Markup Language&#xff1a;超文本标记语言 &#xff09;&#xff1a;主要用于网页主体结构的搭建&#xff0c;在网页上…...

探索Thymeleaf:用动态Web模板引擎打造吸引人的用户界面(SpringBoot的html详解)

什么是Thymeleaf&#xff1f; Thymeleaf是一个用于Web和独立环境的现代服务器端Java模板引擎&#xff0c;用于处理XML/XHTML/HTML5内容。它特别适合基于Spring框架的Web应用程序&#xff0c;因为它提供了与Spring MVC的出色集成。Thymeleaf以其自然的模板语法和强大的数据绑定…...

视频教程 - 自研Vue3 Tree组件高级功能:虚拟滚动新增节点实现自动滚动

感谢小伙伴们对本套自研vue3 tree组件教程的关注&#xff0c;在前一篇媲美Element Plus JuanTree终极实战&#xff1a;虚拟滚动的功能演示中发现了小bug&#xff0c;特地整理了相关录屏来说明怎么一步步解决bug的&#xff0c;来回馈小伙伴们的支持。 Tree组件高级功能&#xff…...

职业生涯阶段总结3:转眼毕业三年

不知不觉&#xff0c;科班毕业三年多了&#xff0c;也换了三个单位了&#xff1b; 个人软件开发的理论和技术能力确实比以前刚出来的时候&#xff0c;强了不少&#xff1b; 在行情越发下滑的形势&#xff0c;似乎只有进大厂才能拿到不错的收入&#xff0c;但是大厂的压力也是比…...

向客户介绍网站建设的话术/十大永久免费的软件下载

如果使用编译安装的方式来安装LAMP构架的服务器&#xff0c;就算你对编译的过程了如指掌&#xff0c;那夜需要两个小时或更多的时间&#xff0c;如果不是对编译的软件特别的熟悉&#xff0c;那么建议大家使用YUM的方式来进行安装。 安装vsftp[rootServer Server]# rpm -ivh vsf…...

wordpress 制作app/免费软文发布平台

什么是敏捷开发方法&#xff1f;什么是SCRUM&#xff1f; 有人在这个字面上下功夫&#xff0c;说敏捷就是反应要灵敏&#xff0c;动作要快捷&#xff1b;有人还在字面上进行延伸&#xff0c;说敏捷就是又好又快&#xff0c;或者就是多快好省&#xff1b;有人说敏捷就是光写代码…...

网站建设考核表/简单的html网页制作

the practice of claiming a reduction in co2 emissions for the product or s service being considered based on the prevention or removal of ghg emissions in a process unrelated to the product being considered.基于非生产过程中温室气体排放的预防和移除措施&…...

自己办网站审批流程/数据分析

jenkins配置的.net项目的部署。 在dotnet publish这一步时报错 解决方法&#xff1a; 在jenkins的服务器上&#xff0c;删除lock这个文件夹。 cd /tmp/NuGetScratch rm -rf lock 即可解决。 产生的原因&#xff1a;没有排查出来。...

南京网站建设王道下拉??/长沙百度推广优化排名

多址复用技术详解——空分复用、频分复用、时分复用、码分复用 空中接口的频率对于运营商而言是最重要的战略资源。在中国&#xff0c;无线频谱资源是由政府直接分配给运营商&#xff1b;在欧洲很多国家&#xff0c;运营商的频谱资源通过拍卖获得。 电磁波的传播方式在视距情况…...

协会网站开发/郑州网站建设专业乐云seo

不忘初心&#xff01;设计久了&#xff0c;每天我们面对一堆待画的图纸&#xff0c;是否还记得刚入行的时候制图老师对我们的敦敦教诲&#xff1f;那时候他们不厌其烦地告诉我们这些制图的基本规范要严格遵守&#xff0c;不只是让图纸看起来美观&#xff0c;更重要的是形成统一…...