【C语言】Top K问题【建小堆】
前言
TopK问题:从n个数中,找出最大(或最小)的前k个数。
在我们生活中,经常会遇到TopK问题
比如外卖的必吃榜;成单的前K名;各种数据的最值筛选
问题分析
显然想开出40G的空间是不现实的,那应该怎么办呢?
答案是:建小堆
代码实现
#include<stdio.h>
#include<stdlib.h>
#include<time.h>// 造数据
void CreateNDate()
{// 造数据int n = 10000;srand(time(0));const char* file = "data.txt";FILE* fin = fopen(file, "w");if (fin == NULL){perror("fopen error");return;}for (int i = 0; i < n; ++i){int x = (rand() + i) % 1000000;fprintf(fin, "%d\n", x);}fclose(fin);
}
void Swap(int* px, int* py)
{int tmp = *px;*px = *py;*py = tmp;
}
//向下调整算法
void AdjustDown(int* a, int n, int parent)
{int child = parent * 2 + 1;while (child < n){if (child + 1 < n && a[child + 1] < a[child]){child++;}if (a[child] < a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}
void PrintTopK(int k)
{FILE* fout = fopen("data.txt", "r");if (fout == NULL){perror("fopen mail");return;}int* minheap = (int*)malloc(sizeof(int) * k);if (minheap == NULL){perror("minheap mail");return;}for (int i = 0; i < k; i++){fscanf_s(fout, "%d", &minheap[i]);}//建小堆for (int i = (k - 1 - 1) / 2; i >= 0; i--){AdjustDown(minheap, k, i);}int x = 0;int val = 0;while (val = fscanf_s(fout, "%d", &x) != EOF){if (x > minheap[0]){minheap[0] = x;AdjustDown(minheap, k, 0);}}for (int i = 0; i < k; i++){printf("%d ", minheap[i]);}fclose(fout);
}
int main()
{//CreateNDate();printf("请输入k:>");int k = 0;scanf_s("%d", &k);PrintTopK(k);return 0;
}
运行结果:
结果验证
那我们怎么确定输出在屏幕上的数据就是最大的数据呢?
我们可以在已经创建的数据上面修改,如图后面111的是在原有数据上手动添加的
重新运行,结果与预期一致
相关文章:

【C语言】Top K问题【建小堆】
前言 TopK问题:从n个数中,找出最大(或最小)的前k个数。 在我们生活中,经常会遇到TopK问题 比如外卖的必吃榜;成单的前K名;各种数据的最值筛选 问题分析 显然想开出40G的空间是不现实的&#…...
Rust 程序设计语言学习——并发编程
安全且高效地处理并发编程是 Rust 的另一个主要目标。并发编程(Concurrent programming),代表程序的不同部分相互独立地执行,而并行编程(parallel programming)代表程序不同部分同时执行,这两个…...

联邦学习研究综述【联邦学习】
文章目录 0 前言机器学习两大挑战: 1 什么是联邦学习?联邦学习的一次迭代过程如下:联邦学习技术具有以下几个特点: 2 联邦学习的算法原理目标函数本地目标函数联邦学习的迭代过程 3 联邦学习分类横向联邦学习纵向联邦学习联邦迁移…...
深入理解Python中的列表推导式
深入理解Python中的列表推导式 在Python编程中,列表推导式(List Comprehension)是一种简洁而强大的语法,用于创建和操作列表。它不仅提高了代码的可读性,还能显著减少代码的行数。本文将详细介绍什么是列表推导式,如何使用它,以及一些实际应用示例,帮助读者更好地理解…...

Android 实现左侧导航栏:NavigationView是什么?NavigationView和Navigation搭配使用
目录 1)左侧导航栏效果图 2)NavigationView是什么? 3)NavigationView和Navigation搭配使用 4)NavigationView的其他方法 一、实现左侧导航栏 由于Android这边没有直接提供左侧导航栏的控件,所以我尝试了…...

如何快速下载拼多多图片信息,效率高
图片是电商吸引顾客的关键因素,高质量的商品图片能提升产品吸引力,增强用户购买欲望。良好的视觉展示有助于建立品牌形象,提高转化率。同时,图片也是商品信息的主要传递媒介,对消费者决策过程至关重要。 使用图快下载器…...
windows 10下,修改ubuntu的密码
(1)在搜索框里面输入cmd,然后点击右键,选择管理员打开 Microsoft Windows [版本 10.0.22631.3880] (c) Microsoft Corporation。保留所有权利。 C:\Windows\System32>C: C:\Windows\System32>cd ../../ C:\>cd Users\ASUS\AppData\Local\Micros…...
【MySQL】慢sql优化全流程解析
定位慢sql 工具排查慢sql 调试工具:Arthas运维工具:Skywalking 通过以上工具可以看到哪个接口比较慢,并且可以分析SQL具体的执行时间,定位到哪个sql出了问题。 启用慢查询日志 慢查询日志记录了所有执行时间超过指定参数(lon…...

RabbitMQ高级特性 - 消息分发(限流、负载均衡)
文章目录 RabbitMQ 消息分发概述如何实现消费分发机制(限制每个队列消息数量)使用场景限流背景实现 demo 非公平发送(负载均衡)背景实现 demo RabbitMQ 消息分发 概述 RabbitMQ 的队列在有多个消费者订阅时,默认会通过…...

信号处理——自相关和互相关分析
1.概括 在信号处理中,自相关和互相关是相关分析非常重要的概念,它们能分析一个信号或两个信号在时间维度的相似性,在振动测试分析、雷达测距和声发射探伤得到了广泛的应用。自相关分析的研究对象为一个信号,互相关分析的研究对象…...

如何解决部分设备分辨率不适配
1)如何解决部分设备分辨率不适配 2)Unity中如何实现草的LOD 3)使用了Play Asset Delivery提交版本被Google报错 4)如何计算弧线弹道的落地位置 这是第396篇UWA技术知识分享的推送,精选了UWA社区的热门话题,…...

C#插件 调用存储过程(输出参数类型)
存储过程 CREATE PROCEDURE [dbo].[GetSum]num1 INT,num2 INT,result INT OUTPUT AS BEGINselect result num1 num2 END C#代码 using Kingdee.BOS; using Kingdee.BOS.App.Data; using Kingdee.BOS.Core.Bill.PlugIn; using Kingdee.BOS.Util; using System; using System.…...

代码随想录算法训练营day32 | 509. 斐波那契数 、70. 爬楼梯 、746. 使用最小花费爬楼梯
碎碎念:开始动态规划了!加油! 参考:代码随想录 动态规划理论基础 动态规划常见类型: 动规基础类题目背包问题打家劫舍股票问题子序列问题 解决动态规划问题应该要思考清楚的: 动态规划五部曲࿱…...
【人工智能专栏】Learning Rate Decay 学习率衰减
Learning Rate Decay 学习率衰减 使用格式 optimizer = torch.optim.SGD(model.paraters(), lr=0.1, momentum=0.9, weight_decay=1e-4) scheduler = torch.optim...
浙大版《C语言程序设计(第3版)》题目集
练习4-11 统计素数并求和 本题要求统计给定整数M和N区间内素数的个数并对它们求和。 输入格式: 输入在一行中给出两个正整数M和N(1≤M≤N≤500)。 输出格式: 在一行中顺序输出M和N区间内素数的个数以及它们的和,数字间以空格分隔。 输入…...

【学习笔记】Day 2
一、进度概述 1、inversionnet_train_light 试运行——未成功 2、DL-FWI基础入门培训-1,2,以及作业1的完成——暂未完成作业 二、详情 1、inversionnet_train_light 试运行 在补充完相关依赖后,运行仍有报错 产生原因:这个代码在当…...

Java中的Map(如果想知道Java中有关Map的知识点,那么只看这一篇就足够了!)
前言:在Java编程语言中,集合框架(Collection Framework)提供了一系列用于存储和操作数据的接口和类。其中,Map和Set是两个非常重要的接口,分别用于存储键值对和无重复元素的集合。 ✨✨✨这里是秋刀鱼不做梦…...
裸金属服务器详解
在云计算飞速发展的今天,裸金属服务器(Bare Metal Server, BMS)作为一种兼具传统物理服务器性能和虚拟化服务优势的计算资源,正逐渐成为企业和个人用户的重要选择。今天我们就来了解下关于裸金属服务器的定义、核心特点以及其在各…...

等待唤醒机制两种实现方法-阻塞队列
桌子上有面条-》吃货执行 桌子上没面条-》生产者制造执行 1、消费者等待 消费者先抢到CPU执行权,发现桌子上没有面条,于是变成等待wait状态,并释放CPU执行权,此时的CPU肯定会被厨师抢到,初始开始做面条,…...
数组项相加和 – 如何将 JavaScript 数组中的数字相加
JavaScript 中的数组是一个对象,它允许您在单个变量名称下存储多个值的有序集合,并以多种方式操作这些值。 在本文中,您将学习如何使用几种不同的方法计算给定数组中所有数字的总和。 具体来说,使用以下方法得到数组中所有数字的总…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...

深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互
引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...