当前位置: 首页 > news >正文

通过Java实现插入排序(直接插入,希尔)与选择排序(直接选择,堆排)

目录

(一)插入排序

1.直接插入排序

(1)核心思想:

 (2)代码实现(以从小到大排序为例):

(3)代码分析:

2.希尔排序(缩小增量排序)

(1)核心思想:

(2)代码实现(以从小到大排序为例): 

(3)代码分析:

(二)选择排序

1.直接选择排序

(1)核心思想:

(2)代码实现(以从小到大排序为例):

(3)代码分析:

2.堆排序

(1)核心思想:

(2)代码实现(以从小到大排序为例):

 (3)代码分析:

(三)示例以及各算法耗时参考

1.代码结构

2.程序源码

(1)Sort类:

(2)Test类:

3.测试结果

 ​编辑


(一)插入排序

1.直接插入排序

(1)核心思想:

直接插入排序,顾名思义,即将非有序部分的元素按大小规律逐个插入到有序的部分中,最终使得整体有序。举个简单的例子:当我们在玩扑克牌逐个摸牌时,就会将新牌插入到原来有序的手牌中,此时其实就用到了插入排序的思想。

 (2)代码实现(以从小到大排序为例):

    public static void insertSort(int[] array){//遍历非有序部分数组for(int i=1;i<array.length;i++){//取出非有序部分的第一个元素并向前逐个比对int tmp=array[i];int j=i-1;for(;j>=0;j--){if(tmp<array[j]){//若该元素比前面某元素小,则某元素后移,该元素继续向前比对array[j+1]=array[j];}else{//相反若该元素比前面某元素大,则退出循环break;}//内层循环结束说明已经为该元素找到合适位置,直接插入即可array[j+1]=tmp;}}}

(3)代码分析:

1)时间复杂度:最好情况下(数组本身有序):O(N);最坏情况下(数组本身逆序):O(N^2)。

2)空间复杂度:O(1)(即并未申请额外内存)。

3)稳定性:稳定。

由上可知对于越有序的数组,使用直接插入排序更有优势。

2.希尔排序(缩小增量排序)

(1)核心思想:

希尔排序,又称为缩小增量排序,其本质为直接插入排序的优化形式,在直接插入排序的基础上采取了分治(即分而治之,分组考虑)的思想:通过设定元素下标间隔增量gap来将一组元素分为多组,分别进行直接插入排序,将每个组排完序后将gap减小重复上述过程,直到gap为1,上述全过程整租元素都在不断趋于有序,最终实现排序效果。

例如:数组元素为10时且设定第一次gap为5的情况:

(2)代码实现(以从小到大排序为例): 

//实现希尔排序方法public static void shellSort(int[] array){//设定间隔增量gapint gap=array.length;while (gap > 1) {//每次循环缩小间隔增量gap/=2;//以间隔增量对数组进行分组插入排序shellSortChild(array,gap);}}//实现希尔排序的底层方法private static void shellSortChild(int[]array,int gap){//遍历非有序部分数组,i++表示对每组进行交替排序for(int i=gap;i<array.length;i++){//取出非有序部分的第一个元素并向前逐个比对int tmp=array[i];int j=i-gap;for(;j>=0;j-=gap){if(tmp<array[j]){//若该元素比前面某元素小,则某元素后移,该元素继续向前比对array[j+gap]=array[j];}else{//相反若该元素比前面某元素大,则退出循环break;}//内层循环结束说明已经为该元素找到合适位置,直接插入即可array[j+gap]=tmp;}}}

(3)代码分析:

1)时间复杂度:目前无法严格证明,原因是该算法根据gap的取法不同而不同(本题中gap取法为二分法,即不断除以二),并且当gap较大时每组遍历次数较少,gap较小时整体又更有序,无法进行严格计算,但有学者通过大量实验证明希尔排序的时间复杂度应该介于N^1.25~1.6N^1.25之间,可以估计为O(N^1.3)。

2)空间复杂度:O(1)(即并未申请额外内存)。

3)稳定性:不稳定。

联系直接插入排序可知,希尔排序可以克服传统直接插入排序在完全逆序情况下时间复杂度过高的劣势。

(二)选择排序

1.直接选择排序

(1)核心思想:

直接选择排序,顾名思义,即每一次从非有序部分的元素中选出最小(或最大)的一个元素,存放在非有序部分的起始位置,直到全部非有序部分元素全部排完,此时整组元素有序。

(2)代码实现(以从小到大排序为例):

    //实现直接选择排序public static void selectSort(int[]array){//遍历非有序部分数组for(int i=0;i< array.length;i++){//默认最小值下标为起始下标int minIndex=i;//遍历剩余部分寻找最小值下标for(int j=i+1;j< array.length;j++){if(array[j]<array[i]){minIndex=j;}}//循环结束证明已经找到最小值下标,与非有序部分起始位置交换int tmp=array[minIndex];array[minIndex]=array[i];array[i]=tmp;}}

(3)代码分析:

1)时间复杂度:无论何时均为O(N^2)。

2)空间复杂度:O(1)(即并未申请额外内存)。

3)稳定性:不稳定。

2.堆排序

(1)核心思想:

利用堆的优先级特性,升序排列建大堆,降序排列建小堆,每次将堆顶元素和未排序堆尾元素互换后进行向上调整(这样堆尾元素一定是当前堆的最值),最终整个堆有序。(思路类似于直接选择排序或者冒泡排序,即每次都将未排序的部分中的最值放于末尾,如此最终整个数组有序)。

(2)代码实现(以从小到大排序为例):

    //实现堆排序//创建一个大根堆的方法public static void createMaxHeap(int[] array){//从最后一棵子树倒序调整for(int parent=((array.length-1-1)/2);parent>=0;parent--){//调用向下调整的底层方法maxSiftDown(array,parent,array.length-1);}}//创建大根堆时调用到的向下调整的底层方法private static void maxSiftDown(int[]array,int parent,int end){//默认子女中的最大值为左子女int child=2*parent+1;while(child<end){//判断右子女是否为二者中最大值if(child+1<end){if(array[child]<array[child+1]){child++;}}if(array[parent]<array[child]){//子女节点中最大值大于双亲则进行交换调整int temp=array[parent];array[parent]=array[child];array[child]=temp;//向下迭代parent=child;child=2*parent+1;}else{//子女节点中最大值小于双亲说明该树已经为大根堆,无需向下调整,直接中断即可break;}}}//利用创建的大根堆实现堆排序public static void heapSort(int[]array){createMaxHeap(array);int end= array.length-1;while(end>0){//将堆顶元素和堆尾元素交换int temp=array[end];array[end]=array[0];array[0]=temp;//利用大根堆向下调整的方法maxSiftDown(array,0,end);end--;}}

(注:堆的创建,向上调整部分具体思路及讲解可见本人博客:通过Java模拟实现堆(大根堆与小根堆)及其相关操作http://t.csdnimg.cn/JZlWL )

 (3)代码分析:

1)时间复杂度:O(N^log N)。

2)空间复杂度:O(1)(即并未申请额外内存,注意建堆也是在原数组上进行操作的)。

3)稳定性:不稳定。

(三)示例以及各算法耗时参考

1.代码结构

1. Sort类:内部实现直接选择排序,希尔排序,直接插入排序,堆排序相关方法(即上文实现的四种算法)

2.Test类:实现创建顺序数组,逆序数组,随机数组的方法(用来测试四种算法)以及测量四种算法耗时的方法,并在main方法中进行示例演示。

2.程序源码

(1)Sort类:

public class Sort {//实现直接插入排序方法public static void insertSort(int[] array){//遍历非有序部分数组for(int i=1;i<array.length;i++){//取出非有序部分的第一个元素并向前逐个比对int tmp=array[i];int j=i-1;for(;j>=0;j--){if(tmp<array[j]){//若该元素比前面某元素小,则某元素后移,该元素继续向前比对array[j+1]=array[j];}else{//相反若该元素比前面某元素大,则退出循环break;}//内层循环结束说明已经为该元素找到合适位置,直接插入即可array[j+1]=tmp;}}}//实现希尔排序方法public static void shellSort(int[] array){//设定间隔增量gapint gap=array.length;while (gap > 1) {//每次循环缩小间隔增量gap/=2;//以间隔增量对数组进行分组插入排序shellSortChild(array,gap);}}//实现希尔排序的底层方法private static void shellSortChild(int[]array,int gap){//遍历非有序部分数组,i++表示对每组进行交替排序for(int i=gap;i<array.length;i++){//取出非有序部分的第一个元素并向前逐个比对int tmp=array[i];int j=i-gap;for(;j>=0;j-=gap){if(tmp<array[j]){//若该元素比前面某元素小,则某元素后移,该元素继续向前比对array[j+gap]=array[j];}else{//相反若该元素比前面某元素大,则退出循环break;}//内层循环结束说明已经为该元素找到合适位置,直接插入即可array[j+gap]=tmp;}}}//实现直接选择排序public static void selectSort(int[]array){//遍历非有序部分数组for(int i=0;i< array.length;i++){//默认最小值下标为起始下标int minIndex=i;//遍历剩余部分寻找最小值下标for(int j=i+1;j< array.length;j++){if(array[j]<array[i]){minIndex=j;}}//循环结束证明已经找到最小值下标,与非有序部分起始位置交换int tmp=array[minIndex];array[minIndex]=array[i];array[i]=tmp;}}//实现堆排序//创建一个大根堆的方法public static void createMaxHeap(int[] array){//从最后一棵子树倒序调整for(int parent=((array.length-1-1)/2);parent>=0;parent--){//调用向下调整的底层方法maxSiftDown(array,parent,array.length-1);}}//创建大根堆时调用到的向下调整的底层方法private static void maxSiftDown(int[]array,int parent,int end){//默认子女中的最大值为左子女int child=2*parent+1;while(child<end){//判断右子女是否为二者中最大值if(child+1<end){if(array[child]<array[child+1]){child++;}}if(array[parent]<array[child]){//子女节点中最大值大于双亲则进行交换调整int temp=array[parent];array[parent]=array[child];array[child]=temp;//向下迭代parent=child;child=2*parent+1;}else{//子女节点中最大值小于双亲说明该树已经为大根堆,无需向下调整,直接中断即可break;}}}//利用创建的大根堆实现堆排序public static void heapSort(int[]array){createMaxHeap(array);int end= array.length-1;while(end>0){//将堆顶元素和堆尾元素交换int temp=array[end];array[end]=array[0];array[0]=temp;//利用大根堆向下调整的方法maxSiftDown(array,0,end);end--;}}
}

(2)Test类:

import java.util.Arrays;
import java.util.Random;public class Test {//生成一个顺序数组的方法public static void order(int[] array){for(int i=0;i< array.length;i++){array[i]=i;}}//生成一个逆序数组的方法public static void reverseOrder(int[] array){for(int i=0;i<array.length;i++){array[i]= array.length-i;}}//生成一个随机数数组的方法public static void randomOrder(int[] array){Random random=new Random();for(int i=0;i<array.length;i++){array[i]= random.nextInt(10_0000);}}//测试直接插入排序时间的方法public static void testInsertSort(int[]array){//拷贝一个新的数组array= Arrays.copyOf(array,array.length);//获取起始时间戳long starttime=System.currentTimeMillis();Sort.insertSort(array);//获取终止时间戳long endtime=System.currentTimeMillis();//输出耗时System.out.println("直接插入排序耗时:"+(endtime-starttime));}//测试希尔排序时间的方法public static void testShellSort(int[]array){//拷贝一个新的数组array= Arrays.copyOf(array,array.length);//获取起始时间戳long starttime=System.currentTimeMillis();Sort.shellSort(array);//获取终止时间戳long endtime=System.currentTimeMillis();//输出耗时System.out.println("希尔排序耗时:"+(endtime-starttime));}//测试直接选择排序时间的方法public static void testSelectSort(int[]array){//拷贝一个新的数组array= Arrays.copyOf(array,array.length);//获取起始时间戳long starttime=System.currentTimeMillis();Sort.selectSort(array);//获取终止时间戳long endtime=System.currentTimeMillis();//输出耗时System.out.println("直接选择排序耗时:"+(endtime-starttime));}//测试直接选择排序时间的方法public static void testHeapSort(int[]array){//拷贝一个新的数组array= Arrays.copyOf(array,array.length);//获取起始时间戳long starttime=System.currentTimeMillis();Sort.heapSort(array);//获取终止时间戳long endtime=System.currentTimeMillis();//输出耗时System.out.println("堆排序耗时:"+(endtime-starttime));}public static void main(String[] args) {int[]array=new int[10_0000];//测试顺序数组情况System.out.println("***********************");System.out.println("顺序数组情况:");order(array);testInsertSort(array);testShellSort(array);testSelectSort(array);testHeapSort(array);System.out.println("***********************");//测试逆序数组情况System.out.println("逆序数组情况:");reverseOrder(array);testInsertSort(array);testShellSort(array);testSelectSort(array);testHeapSort(array);System.out.println("***********************");//测试随机数组情况System.out.println("随机数组情况:");randomOrder(array);testInsertSort(array);testShellSort(array);testSelectSort(array);testHeapSort(array);System.out.println("***********************");}
}

3.测试结果

 

上图可以直观感受各算法在不同情况下的表现。

以上便是通过Java实现插入排序(直接插入,希尔)与选择排序(直接选择,堆排)的全部内容,如有不当,敬请斧正!

相关文章:

通过Java实现插入排序(直接插入,希尔)与选择排序(直接选择,堆排)

目录 &#xff08;一&#xff09;插入排序 1.直接插入排序 &#xff08;1&#xff09;核心思想&#xff1a; &#xff08;2&#xff09;代码实现&#xff08;以从小到大排序为例&#xff09;&#xff1a; &#xff08;3&#xff09;代码分析&#xff1a; 2.希尔排序&#xff08…...

大型分布式B2B2C多用户商城7.0企业版源码分享【java语言、方便二次开发】

项目介绍 项目基于SpringBoot开发&#xff0c;运营端和商户端采用ElementVue&#xff0c;买家使用采用VueIviewnuxt服务端渲染。使用到的中间件有Redis、RabbitMQ、ElasticSearch、FastDFS、Mongodb等。主要功能包括有运营管理、商品管理、订单管理、售后管理、会员管理、财务…...

C++的结构体、联合体、枚举类型(一)

1.C++的结构体 2.C++的联合体 3.C++的枚举类型 1.C++的结构体 (1)C++中定义结构体变量,可以省略struct关键字 struct XX{…}; XX x;//定义结构体变量直接省略struct(2)C++结构体中可以直接定义函数,谓之成员函数(又叫方法)(3)在成员函数中可以直接访问该结构体的成员变…...

搭建高可用OpenStack(Queen版)集群(一)之架构环境准备

一、搭建高可用OpenStack&#xff08;Queen版&#xff09;集群之架构环境准备 一、架构设计 二、初始化基础环境 1、管理节点创建密钥对&#xff08;方便传输数据&#xff09; 所有控制节点操作 # ssh-keygen #一路回车即可 Generating public/private rsa key pair. Enter f…...

通过Stack Overflow线程栈溢出的问题实例,详解C++程序线程栈溢出的诸多细节

目录 1、问题说明 2、从Visual Studio输出窗口中找到了线索&#xff0c;发生了Stack Overflow线程栈溢出的异常 3、发生Stack Overflow线程栈溢出的原因分析 4、线程占用的栈空间大小说明 5、引发线程栈溢出的常见原因和场景总结 6、在问题函数入口处添加return语句&…...

LeetCode刷题笔记 | 3 | 无重复字符的最长子串 | 双指针 | 滑动窗口 | 2025兴业银行秋招笔试题 | 哈希集合

&#x1f64b;大家好&#xff01;我是毛毛张! &#x1f308;个人首页&#xff1a; 神马都会亿点点的毛毛张 这是一道银行的面试题&#xff0c;就是简单&#xff1f;&#xff01; LeetCode链接&#xff1a;3. 无重复字符的最长子串 1.题目描述 给定一个字符串 s &#xff0c…...

验证cuda和pytorch都按照成功了

要验证您的PyTorch是否能够调用CUDA&#xff0c;您可以执行以下步骤&#xff1a; 1. **检查CUDA是否可用**&#xff1a; 在Python中运行以下代码来检查CUDA是否可用&#xff1a; python import torch print(torch.cuda.is_available()) 如果输出为 True&…...

iOS开发如何自己捕获Crash

为了在iOS中捕获和处理未捕获的Objective-C异常和系统信号引起的崩溃&#xff0c;可以使用NSSetUncaughtExceptionHandler和标准的Unix信号处理机制来实现。这能帮助你记录绝大部分的崩溃信息。以下是详细的实现步骤和代码示例&#xff1a; 一、系统崩溃处理 通过NSSetUncaug…...

雪花算法(Snowflake Algorithm)

雪花算法&#xff08;Snowflake Algorithm&#xff09;是一种分布式唯一ID生成算法&#xff0c;主要用于生成全球唯一的ID&#xff0c;广泛应用于分布式系统中&#xff0c;例如在数据库中作为主键。这个算法最初由Twitter提出&#xff0c;并且被广泛使用在很多大规模系统中。有…...

〖任务1〗ROS2 jazzy Linux Mint 22 安装教程

前言&#xff1a; 本教程在Linux系统上使用。 目录 一、linux安装二、linux VPN安装三、linux anaconda安装&#xff08;可选&#xff09;四、linux ROS2 安装五、rosdep init/update 解决方法六、安装GUI 一、linux安装 移动硬盘安装linux&#xff1a;[LinuxToGo教程]把ubunt…...

图像增强:使用周围像素填充掩码区域

制作图像需要填充的掩码区域,对需要填充的位置的mask赋值非0,不需要填充赋值为0使用cv2.inpaint对图像掩码mask中非0元素位置的图像像素进行修复。从而实现使用周围像素填充掩码区域cv2.inpaint 是 OpenCV 库中的一个函数,用于图像修复(inpainting),即填充图像中的损坏区…...

给虚拟机Ubuntu扩展硬盘且不丢数据

1.Ubuntu关机状态下先扩展&#xff0c;如扩展20GB 2.进入ubuntu&#xff0c;切换root登录&#xff0c;必须是root全选&#xff0c;否则启动不了分区工具gparted 将新的20GB创建好后&#xff0c;选择ext4,primary&#xff1b; 3.永久挂载 我的主目录在/并挂载到/dev/sda1 从图…...

Oracle(41)如何使用PL/SQL批量处理数据?

在PL/SQL中&#xff0c;批量处理数据是一种高效的方法&#xff0c;可以在数据库中处理大量数据&#xff0c;而无需逐行操作。批量处理数据的关键技术包括&#xff1a; PL/SQL表&#xff08;索引表&#xff09;&#xff1a;在内存中存储数据以进行批量操作。FORALL语句&#xf…...

JavaEE 第2节 线程安全知识铺垫1

目录 一、通过jconsole.exe查看线程状态的方法 二、Thread类的几种常见属性 三、线程状态 一、通过jconsole.exe查看线程状态的方法 通过jconsole查看线程状态非常实用的方式 只要你安装了jdk&#xff0c;大致按照这个目录就可以找到这个可执行程序&#xff1a; 然后双击这…...

LeetCode Hot100 零钱兑换

给你一个整数数组 coins &#xff0c;表示不同面额的硬币&#xff1b;以及一个整数 amount &#xff0c;表示总金额。 计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额&#xff0c;返回 -1 。 你可以认为每种硬币的数量是无限的。 示…...

微信小程序接口实现语音转文字

一、效果展示 我们有一个按钮&#xff0c;点击“开始录音”按钮&#xff0c;此时按钮变成“停止录音”并开始计时&#xff0c;点击停止录音后&#xff0c;界面上即可展示返回的文字 二、代码实现 完整代码实现见github 1.小程序端代码 // index.js const recorderManager…...

[Spark Streaming] 读取 Kafka 消息, 插入到 MySQL

以下是一个简单的使用 Spark Streaming 读取 Kafka 消息、统计数据后插入到 MySQL 中的 Scala 代码示例&#xff1a; import org.apache.spark.SparkConf import org.apache.spark.streaming.{Seconds, StreamingContext} import org.apache.spark.streaming.kafka.KafkaUtils…...

精选3款国内wordpress 主题,建站首选

WordPress作为一款功能强大且易于使用的建站平台&#xff0c;已经成为了许多企业和个人搭建网站的首选。为了帮助大家更好地选择适合自己的WordPress主题&#xff0c;小编将为大家推荐三款国内优秀的WordPress主题&#xff1a;子比主题、OneNav主题和RiTheme主题。 1.子比主题…...

JavaScript之 Uint8Array 类型数组(solana pda场景中的大小端)

文章目录 JavaScript之 Uint8Array 类型数组numberToUint8Array 数字转换为Uint8Array为什么要把数字转换为Uint8Array数字转换为Uint8Array的大小端问题solana pda场景中的大小端JavaScript之 Uint8Array 类型数组 Uint8Array 数组类型表示一个8位无符号整型数组,创建时内容…...

《Windows API每日一练》24.1 WinSock简介

本节将逐一介绍WinSock的主要特性和组件&#xff0c;套接字、WinSock动态库的使用。 本节必须掌握的知识点&#xff1a; Windows Socket接口简介 Windows Socket接口的使用 第178练&#xff1a;网络时间校验 24.1.1 Windows Socket接口简介 ■以下是WinSock的主要特性和组件…...

openwrt编译Dockerfile

一、Dockerfile FROM ubuntu:20.04ENV TZAsia/ShanghaiRUN apt-get update && \apt-get install -y --no-install-recommends tzdata && \ln -fs /usr/share/zoneinfo/$TZ /etc/localtime && \dpkg-reconfigure --frontend noninteractive tzdata &am…...

【C语言】分支与循环(循环篇)——结尾猜数字游戏实现

前言 C语言是一种结构化的计算机语言&#xff0c;这里指的通常是顺序结构、选择结构、循环结构&#xff0c;掌握这三种结构之后我们就可以解决大多数问题。 分支结构可以使用if、switch来实现&#xff0c;而循环可以使用for、while、do while来实现。 1. while循环 C语言中…...

【数据结构】链表篇

文章目录 1.链表的概念以及结构2.链表的分类2.1 单向或者双向2.2 带头或者不带头2.3 循环或者不循环2.4 无头单向非循环链表和带头双向循环链表 3.单链表的实现3.1 准备工作3.2 节点的创建3.3 单链表的释放3.4 打印链表3.5 单链表的尾插3.6 单链表的尾删3.7 单链表头删3.8 单链…...

Python SciPy介绍

在数据科学和工程领域&#xff0c;Python已经成为了一个不可或缺的工具&#xff0c;这主要得益于其强大的库和框架支持。其中&#xff0c;SciPy库作为Python科学计算的核心库之一&#xff0c;为研究人员、工程师和数据分析师提供了大量高效的算法和数学工具。本文将带您深入了解…...

docker镜像源

1、直接在服务器上创建这个文件&#xff0c;将镜像源配置在里面 /etc/docker/daemon.json {"registry-mirrors": ["https://do.nark.eu.org","https://dc.j8.work","https://docker.m.daocloud.io","https://dockerproxy.com&qu…...

【clion】clion打开文件目录卡死问题

巨卡&#xff0c;几乎无法打开&#xff0c;据说是fsnotifier64.exe 被限制了。删除 火绒就好了。 关闭windows defender 官方&#xff1a;关闭 Windows 安全中心中的Defender 防病毒保护 此时&#xff0c;删除火绒&#xff1a; 界面变这样了&#xff1a;...

[CR]厚云填补_GridFormer

GridFormer: Residual Dense Transformer with Grid Structure for Image Restoration in Adverse Weather Conditions Abstract 恶劣天气条件下的图像恢复是计算机视觉中的一个难点。在本文中&#xff0c;我们提出了一种新的基于变压器的框架GridFormer&#xff0c;它可以作为…...

PostgreSQL数据库内核(二):通过initdb传递guc参数

目录 增加guc参数 initdb参数传递 pg_ctl参数传递 参数验证 新增guc参数pg_test_parameter&#xff0c;支持从initdb和pg_ctl命令中传递/覆盖参数&#xff0c;使用场景是TDE透明加密指定算法或者某些定制化需求。 增加guc参数 pg源码是这样描述guc参数的&#xff1a;它是全局…...

rust常用的宏使用记录(九)

matches! 宏使用 matches! 是 Rust 标准库中一个非常有用的宏&#xff0c;它允许你方便地匹配一个表达式的结果是否符合某个模式。它的基本用法如下&#xff1a;matches!(expression, pattern) 这个宏返回一个布尔值&#xff0c;如果 expression 匹配 pattern&#xff0c;则返回…...

【Python机器学习】支持向量机——手写数字识别问题

基于SVM的数字识别步骤&#xff1a; 1、收集数据&#xff1a;提供的文本文件 2、准备数据&#xff1a;基于二值图像构造向量 3、分析数据&#xff1a;对图像向量进行目测 4、训练算法&#xff1a;采用两种不同的核函数&#xff0c;并对径向基核函数采用不同的设置来运行SMO算法…...

学习笔记-Cookie、Session、JWT

目录 一、验证码的生成与校验 1. 创建生成验证码的工具类 2. 写一个 Controller 3. 实现验证码验证 1. 获取验证码 2. 验证码请求过程 3. 验证码的校验 4. 原理说明 5. 验证 6. 总结 二、JWT登录鉴权 1. 为什么要做登录鉴权&#xff1f; 2. 什么是 JWT 3. JWT相比…...

题海战术,面试必胜秘诀

目录 1.Java 的优势是什么&#xff1f;2.什么是 Java 的多态特性?3.Java 中的参数传递是按值还是按引用?4.为什么 Java 不支持多重继承?5.什么是 Java 中的不可变类?总结 题目 来自面试鸭刷题神器 1.Java 的优势是什么&#xff1f; Java 的跨平台性、垃圾回收机制以及其强…...

设计模式详解(十九)——命令模式

命令模式简介 命令模式定义 命令模式&#xff08;Command Pattern&#xff09;是一种在面向对象程序设计中常用的行为型设计模式。命令模式的核心思想在于将请求封装成一个对象&#xff0c;从而使发出请求的责任和执行请求的责任分割开。它可以让请求发送者和请求接收者之间消…...

实战:MySQL数据同步神器之Canal

1.概叙 场景一&#xff1a;数据增量实时同步 项目中业务数据量比较大&#xff0c;每类业务表都达到千万级别&#xff0c;虽然做了分库分表&#xff0c;每张表数据控制在300W以下&#xff0c;但是效率还是达不到要求&#xff0c;为了提高查询效率&#xff0c;打算使用ES进行数…...

5.6软件工程-运维

运维 系统转换系统维护系统评价练习题 系统转换 新老系统的转换 系统转换是指&#xff1a;新系统开发完毕&#xff0c;投入运行&#xff0c;取代现有系统的过程&#xff0c;需要考虑多方面的问题&#xff0c;以实现与老系统的交接&#xff0c;有一下三种转换计划&#xff1a; …...

在JavaScript中如何确保构造函数只被new调用

构造函数是一个特殊的函数&#xff0c;用于初始化一个新创建的对象。它是在创建对象时自动调用的。构造函数通常用于为对象的属性赋值&#xff0c;或者执行其他必要的设置。 使用函数名大写字母开头&#xff0c;这是一种命名约定&#xff0c;用于区分构造函数和普通函数。如何…...

【数据结构算法经典题目刨析(c语言)】反转链表(图文详解)

&#x1f493; 博客主页&#xff1a;C-SDN花园GGbond ⏩ 文章专栏&#xff1a;数据结构经典题目刨析(c语言) 目录 一、题目描述 二、思路分析 三、代码实现 一、题目描述&#xff1a; 二、思路分析 &#xff1a; 通过三个指针n1,n2,n3来实现链表的反转 1.首先初始化 n1为…...

机器学习之争:Python vs R,谁更胜一筹?

一、引言 随着人工智能和大数据的迅速发展&#xff0c;机器学习已成为现代科技的重要组成部分。在医疗、金融、零售、制造等多个领域&#xff0c;机器学习技术的应用无处不在。从数据分析到预测建模&#xff0c;再到深度学习&#xff0c;机器学习正在改变我们的工作和生活方式…...

Vulnhub靶机:JANGOW_ 1.0.1

目录 前言&#xff1a; 一、安装虚拟机Jangow&#xff1a;1.0.1靶机 二、Web部分 前言&#xff1a; 难度&#xff1a;简单&#xff0c;本文使用VirtualBox打开&#xff0c;下载地址&#xff1a; https://download.vulnhub.com/jangow/jangow-01-1.0.1.ova 一、安装虚拟机J…...

Python脚本实现USB自动复制文件

USB驱动器作为常见的数据存储设备&#xff0c;经常用于数据传输和备份。 然而&#xff0c;我们在手动处理文件复制可能效率低下且容易出错。 因此&#xff0c;我们可以利用Python编写脚本来自动化这一过程&#xff0c;提高效率和数据安全性。 准备工作 首先&#xff0c;我们需…...

【C++学习第19天】最小生成树(对应无向图)

一、最小生成树 二、代码 1、Prim算法 #include <cstring> #include <iostream> #include <algorithm>using namespace std;const int N 510, INF 0x3f3f3f3f;int n, m; int g[N][N]; int dist[N]; bool st[N];int prim() {memset(dist, 0x3f, sizeof di…...

第一个 Flask 项目

第一个 Flask 项目 安装环境创建项目启动程序访问项目参数说明Flask对象的初始化参数app.run()参数 应用程序配置参数使用 Flask 的 config.from_object() 方法使用 Flask 的 config.from_pyfile() 方法使用 Flask 的 config.from_envvar() 方法步骤 1: 设置环境变量步骤 2: 编…...

利用 Angular 发挥环境的力量

一.介绍 您是否曾想过如何在不同的环境中为同一应用设置不同的颜色、标题或 API 调用&#xff1f;可以肯定的是&#xff0c;生产 API 和测试 API 是不同的&#xff0c;应谨慎使用。部署时&#xff0c;我们不会在项目的所有地方手动更改所有 API 调用。不应这样做&#xff0c;因…...

Vue3+TypeScript+printjs 实现标签批量打印功能

前言&#xff1a;临时性需求没怎么接触过前端&#xff0c;代码实现有问题及优化点希望大佬可以留言告知一下 开发工具&#xff1a;VS CODE 界面开发&#xff1a;Vue3TypeScriptElementPlus 打印组件&#xff1a;Print-JS 前端打印入口图&#xff1a; 标签页面&#xff1a; …...

微信文件如何直接打印及打印功能在哪里设置?

在数字化时代&#xff0c;打印需求依旧不可或缺&#xff0c;但传统打印店的高昂价格和不便操作常常让人头疼。幸运的是&#xff0c;琢贝打印作为一款集便捷、经济、高效于一体的网上打印平台&#xff0c;正逐渐成为众多用户的首选。特别是通过微信小程序下单&#xff0c;更是让…...

dataX -20240804-master分支

1、相关报错 Error: java.io.IOException: java.lang.RuntimeException: ORC split generation failed with exception: org.apache.orc.impl.SchemaEvolution$IllegalEvolutionException: ORC does not support type conversion from file type struct<nanos:int> (10)…...

【网络】传输层

传输层 一、预备知识1、端口号1、端口号范围划分2、知名端口号3、两个问题4、netstat && iostate5、pidof6、谈下面协议始终铭记两个问题 二、UDP协议&#xff08;简单&#xff09;1、UDP协议端格式2、UDP的特点3、面向数据报4、UDP缓冲区 三、TCP协议&#xff08;重点…...

学生管理系统之更新和删除、筛选

学生管理系统之更新和删除 建立新的窗口 添加组件 进行布局 使用Widget把二个放在一块,作为一列,然后全选进行栅格布局,最后添加弹簧进行微调。 编写增加的槽函数 在主函数中调用对话框...

教您一键批量下载拼多多批发图片信息,节省时间

图片是电商的核心展示手段&#xff0c;高质量、吸引人的图片能显著提升商品吸引力&#xff0c;增强用户体验&#xff0c;促进购买决策。良好的视觉呈现有助于品牌形象的塑造&#xff0c;提高转化率和客户满意度&#xff0c;对电商平台的流量和销售业绩具有直接影响。 使用图快…...

基于微信小程序的微课堂笔记的设计与实现(源码+论文+部署讲解等)

博主介绍&#xff1a;✌全网粉丝10W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌ 技术栈介绍&#xff1a;我是程序员阿龙&#xff…...