当前位置: 首页 > news >正文

牛客周赛54:D.清楚姐姐跳格子(bfs)

链接:登录—专业IT笔试面试备考平台_牛客网
来源:牛客网
 

题目描述

          \,\,\,\,\,\,\,\,\,\,老妪遂递一羊皮卷轴,上面什么都没有,清楚欲问,老妪却缄口不言。
          \,\,\,\,\,\,\,\,\,\,清楚性格刚直,放下鼠资,正欲再问,忽觉眼前一花,老妪和店铺却都消失不见,唯卷轴与竹鼠。
          \,\,\,\,\,\,\,\,\,\,“怪哉”,清楚回头走,见到地上有一些格子。

          \,\,\,\,\,\,\,\,\,\,清楚正在玩跳格子游戏。地上有 nnn 个格子,清楚一开始在 111 号格子,目标是 nnn 号格子。

          \,\,\,\,\,\,\,\,\,\,第 iii 个格子上有一个数字 aia_iai​ ,清楚在这个格子上可以往左右两边选一个方向,然后选择 aia_iai​ 的一个正整数因子作为长度,进行一次跳跃,但是不可以跳出边界。
          \,\,\,\,\,\,\,\,\,\,请问清楚最少跳多少步,就可以到达 nnn 号格子。

输入描述:

          \,\,\,\,\,\,\,\,\,\,第一行输入一个整数 n ( 1≤n≤103 )n\ (\ 1 \leq n \leq 10^3\ )n ( 1≤n≤103 ) 代表格子数量。\,\,\,\,\,\,\,\,\,\,第二行输入 nnn 个整数 a1,a2,…,an ( 1≤ai≤1018 )a_1,a_2,\dots,a_n\ (\ 1 \leq a_i \leq 10^{18}\ )a1​,a2​,…,an​ ( 1≤ai​≤1018 ) 代表格子上的数字。

输出描述:

          \,\,\,\,\,\,\,\,\,\,在一行上输出一个整数,代表到达终点需要的最少步数 。

示例1

输入

复制5 2 3 1 5 4

5
2 3 1 5 4

输出

复制2

2

说明

          \,\,\,\,\,\,\,\,\,\,在 111 号节点 ,选择 a1a_1a1​ 的因子 111 ,往右跳 111 步,到达 222 号节点。\,\,\,\,\,\,\,\,\,\,在 222 号节点 ,选择 a2a_2a2​ 的因子 333 ,往右跳 333 步,到达 555 号节点。

做法

直接bfs搜就好了

#include<bits/stdc++.h>
using namespace std;
int vis[1010];
long long a[1010];
int n;
struct ty{int x,cnt;
};
queue<ty> q;
void bfs(){q.push({1,0});while(!q.empty()){ty tmp=q.front();q.pop();if(tmp.x==n){cout<<tmp.cnt;return ;}if(vis[tmp.x]) continue;vis[tmp.x]=1;for(int i=1;i<=n;i++){if(a[tmp.x]%i) continue;if(i+tmp.x<=n&&vis[tmp.x+i]==0){q.push({tmp.x+i,tmp.cnt+1});}if(tmp.x-i>=1&&vis[tmp.x-i]==0){q.push({tmp.x-i,tmp.cnt+1});}}}
}
int main(){scanf("%d",&n);for(int i=1;i<=n;i++) scanf("%lld",&a[i]);bfs();
}

wa的原因

因为这几天写了洛谷的跳跃机器人那题,而且最近一直在学dp,就只想着用dp了。不过这题好像不能用dp写。这个后效性好像解决不了,还是说之前的dp写法就是假的???

相关文章:

牛客周赛54:D.清楚姐姐跳格子(bfs)

链接&#xff1a;登录—专业IT笔试面试备考平台_牛客网 来源&#xff1a;牛客网 题目描述 \,\,\,\,\,\,\,\,\,\,老妪遂递一羊皮卷轴&#xff0c;上面什么都没有&#xff0c;清楚欲问&#xff0c;老妪却缄口不言。           \,\,\,\,\,\,\,\,\,\,清楚性格刚直&…...

用户空间 lmkd

用户空间 lmkd 1、概览1.1 配置lmkd 2、lmkd2.1 lmkd启动2.2 时序图 Android LowMemoryKiller原理分析 AOSP>文档>核心主题低内>存终止守护程序 1、概览 Android Low Memory Killer Daemon &#xff1a;system/memory/lmkd/README.md Android 低内存终止守护程序 (lm…...

二叉树专题

Leetcode 104. 二叉树的最大深度 class Solution { public:int maxDepth(TreeNode* root) {if(!root) return 0;int leftd maxDepth(root -> left) 1;int rightd maxDepth(root -> right) 1;return max(leftd, rightd);} }; Leetcode 100. 相同的树 class Solution…...

Spring MVC 之简介及常见注解

一、什么是 Spring MVC Spring Web MVC 是基于 Servlet API 构建的原始 Web 框架&#xff0c;从一开始就包含在 Spring 框架中。它的正式名称 “Spring Web MVC” 来自其源模块的名称 (Spring-webmvc)&#xff0c;但它通常被称为"Spring MVC"。 什么是Servlet呢? S…...

除了使用本地存储,还有哪些方法可以实现只出现一次的弹窗?

除了使用本地存储&#xff0c;还有以下几种方法可以实现只出现一次的弹窗&#xff1a; 1.使用 Cookie&#xff1a;可以将一个标识符存储在浏览器 Cookie 中&#xff0c;下次用户访问页面时检查 Cookie 中是否存在该标识符&#xff0c;从而判断是否需要显示弹窗。 2.使用服务器端…...

微软蓝屏事件揭示的网络安全深层问题与未来应对策略

目录 微软蓝屏事件揭示的网络安全深层问题与未来应对策略 一、事件背景 二、事件影响 2.1、跨行业连锁反应 2.2、经济损失和社会混乱 三、揭示的网络安全问题 3.2、软件更新管理与风险评估 3.2、系统复杂性与依赖关系 3.3、网络安全意识与培训 四、未来的网络安全方向…...

C#:通用方法总结—第11集

大家好&#xff0c;今天继续分享我们的通用方法系列。 下面是今天要分享的通用方法&#xff1a; &#xff08;1&#xff09;这个通用方法为Ug’校验选中体的个数&#xff1a; /// <summary> /// 输出选中体个数 /// </summary> public int CheckOneBody() { int …...

Web开发-html篇-下

这篇是接着上篇的内容&#xff0c;接着介绍html的其他标签及属性的用法&#xff0c;感兴趣的可以从我的html上篇看起 1. 超链接示例 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport&…...

【C++从小白到大牛】多态那些事儿(上)

一、多态的概念 1.1概念: 通俗来说&#xff0c;就是多种形态&#xff0c;具体点就是去完成某个行为&#xff0c;当不同的对象去完成时会产生出不同的状态。 二、 多态的定义及实现 2.1多态的构成条件 多态是在不同继承关系的类对象&#xff0c;去调用同一函数&#xff0c;产…...

网站在线查询工具箱源码分享

终极网络工具系统”(SAAS)&#xff0c;是一款功能强大的PHP脚本在线查询工具。本版集合了超过470种快速且易用的Web工具&#xff0c;为日常任务处理和开发人员提供了极大的便利。作为一款综合性的网络工具系统&#xff0c;66toolkit不仅满足了用户的基本网络需求&#xff0c;更…...

SSH简写且免密登陆终端设备

问题 通常使用ssh连接远程设备时&#xff0c;需要先执行ssh <username><ip>&#xff0c;然后再输入终端设备的用户密码。比较麻烦。 解决 可以用如下方法设置命令缩写以及免密登陆&#xff1a; 免密 首先在本地生成私钥&#xff1a; ssh-keygen -t rsa # or …...

算力共享中神经网络切片和算力分配策略

目录 神经网络切片 按照算力的分布进行网络层数切片;就是算力越强,运算神经网络层数越多 神经网络切片和算力占比进行映射 算力分配策略 get_current_shard 神经网络切片 按照算力的分布进行网络层数切片;就是算力越强,运算神经网络层数越多 神经网络切片和算力占比进…...

3章4节:R的逻辑运算和矩阵运算

逻辑运算和矩阵运算是R语言中两个重要的功能模块,前者用于逻辑判断和条件筛选,后者用于处理多维数据结构和执行线性代数运算。本文章详细介绍R语言中的逻辑运算和矩阵运算,帮助读者掌握这两类运算的基本概念、操作方法和实际应用。 一、逻辑运算 逻辑运算在编程语言中扮演着…...

使用EasyAR打包安卓操作注意

EasyAR for Scene 4.6.3 丨Unity2020.3.15f2 打包Unity注意事项 一、默认渲染管线 官方参考链接&#xff1a;ARFoundation 简单注意 1.打包设置为Android平台 2.PackageName和EasyAR中保持一致 3.Scripting Backend设置为IL2CPP&#xff0c;以及设置为ARM64 4.取消Auto …...

驾驭PyCharm:破解环境配置的迷宫

驾驭PyCharm&#xff1a;破解环境配置的迷宫 PyCharm&#xff0c;作为Python开发者的首选IDE之一&#xff0c;以其强大的功能和用户友好的界面而广受好评。然而&#xff0c;即便是最强大的工具&#xff0c;环境配置问题也可能成为开发者的拦路虎。本文将带你深入探索PyCharm中…...

大数据技术原理-Hadoop的安装

摘要 随着大数据时代的到来&#xff0c;Hadoop作为一项重要的分布式计算框架&#xff0c;其安装与配置是大数据技术学习者必须掌握的技能。本文通过实验报告的形式&#xff0c;详细记录了在虚拟机环境下安装Hadoop并配置其为伪分布式模式的全过程。实验过程中&#xff0c;遇到…...

从根儿上学习spring 八 之run方法启动第四段(2)

图2 我们接着上一篇接着来看refresh方法&#xff0c;我们上一小节说完了invokeBeanFactoryPostProcessors(beanFactory)方法&#xff0c;这一节我们来看registerBeanPostProcessors(beanFactory)方法。 从方法名称定义我们就能看出这个方法主要是用来注册BeanPostProcesor的。…...

牛顿插值法代替泰勒公式

引入 例题 近似函数&#xff1a; 通过这个近似函数可以看出&#xff0c;若要证的函数超过二阶可导&#xff0c;那么就不适合用牛顿插值法代替泰勒公式 因为&#xff0c;后面的操作非常复杂&#xff0c;不划算了… 总结 我们可以通过牛顿插值法生成一个逼近曲线的直线&#xf…...

为 Laravel 提供生产模式下的容器化环境:打造现代开发环境的终极指南

为 Laravel 提供生产模式下的容器化环境&#xff1a;打造现代开发环境的终极指南 在现代开发中&#xff0c;容器化已经成为一种趋势。使用 Docker 可以让我们轻松地管理和部署应用程序。本文将带你一步步构建一个高效的 Laravel 容器化环境&#xff0c;确保你的应用程序在开发…...

Visual Studio 和 VSCode 哪个好?

​ 您好&#xff0c;我是程序员小羊&#xff01; 前言 想要对Visual Studio 和 VSCode 进行比较&#xff0c;就要充分了解Visual Studio (VS) 和 Visual Studio Code (VSCode) 各有其优势和适用场景进行分析。Visual Studio (VS) 和 Visual Studio Code (VSCode) 都是由微软开发…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间&#xff0c; 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点&#xff0c;不需要开启数据库闪回。…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...