数据结构实验报告-树与二叉树
桂 林 理 工 大 学
实 验 报 告
一、实验名称:
实验6 树和二叉树
二、实验内容:
1.编写二叉树的递归遍历算法,实现:给定一棵二叉树的“扩展先序遍历序列”,创建这棵二叉树。
(1)输出二叉树的先序遍历的结点序列。
(2)输出二叉树的后序遍历的结点序列。
(3)输出二叉树的中序遍历的结点序列。
(4)输出二叉树的叶子结点。
(5)统计二叉树的结点个数。
源码:
#include <stdio.h>
#include <stdlib.h>
typedef struct TreeNode {
char data;
struct TreeNode *left;
struct TreeNode *right;
} TreeNode;
// 创建二叉树
TreeNode* createBinaryTree(char *str, int *index) {
if (str[*index] == '\0') {
return NULL;
}
if (str[*index] == '#') {
(*index)++;
return NULL;
}
TreeNode *root = (TreeNode*)malloc(sizeof(TreeNode));
root->data = str[*index];
(*index)++;
root->left = createBinaryTree(str, index);
root->right = createBinaryTree(str, index);
return root;
}
// 先序遍历
void preorder(TreeNode *root) {
if (root != NULL) {
printf("%c ", root->data);
preorder(root->left);
preorder(root->right);
}
}
// 后序遍历
void postorder(TreeNode *root) {
if (root != NULL) {
postorder(root->left);
postorder(root->right);
printf("%c ", root->data);
}
}
// 中序遍历
void inorder(TreeNode *root) {
if (root != NULL) {
inorder(root->left);
printf("%c ", root->data);
inorder(root->right);
}
}
// 输出叶子节点
void printLeaves(TreeNode *root) {
if (root != NULL) {
if (root->left == NULL && root->right == NULL) {
printf("%c ", root->data);
}
printLeaves(root->left);
printLeaves(root->right);
}
}
// 统计节点个数
int countNodes(TreeNode *root) {
if (root == NULL) {
return 0;
}
return 1 + countNodes(root->left) + countNodes(root->right);
}
int main() {
char str[] = "AB#D##CE##"; // 示例扩展先序遍历序列
int index = 0;
TreeNode *root = createBinaryTree(str, &index);
printf("先序遍历序列: ");
preorder(root);
printf("\n");
printf("后序遍历序列: ");
postorder(root);
printf("\n");
printf("中序遍历序列: ");
inorder(root);
printf("\n");
printf("叶子节点: ");
printLeaves(root);
printf("\n");
printf("节点个数: %d\n", countNodes(root));
return 0;
}
2.编写非递归遍历算法,实现:给定一棵二又树的先序 遍历序列和中序通历序列,创建这棵二叉树。
(1)输出二叉树的后序遍历的结点序列。
(2)输出二叉树的叶子结点。
(3)统计二叉树的结点个数。
(4)求二叉树的深度。
(5)输出二叉树指定结点的路径。
源码:
#include <iostream>
#include <stack>
#include <vector>
#include <unordered_map>
using namespace std;
struct TreeNode {
char data;
TreeNode* left;
TreeNode* right;
TreeNode(char val) : data(val), left(NULL), right(NULL) {}
};
TreeNode* buildTree(vector<char>& preorder, vector<char>& inorder) {
if (preorder.empty() || inorder.empty()) return NULL;
unordered_map<char, int> inorder_map;
for (int i = 0; i < inorder.size(); ++i) {
inorder_map[inorder[i]] = i;
}
stack<TreeNode*> stk;
TreeNode* root = new TreeNode(preorder[0]);
stk.push(root);
for (int i = 1; i < preorder.size(); ++i) {
TreeNode* node = new TreeNode(preorder[i]);
TreeNode* top = stk.top();
if (inorder_map[node->data] < inorder_map[top->data]) {
top->left = node;
} else {
TreeNode* parent = NULL;
while (!stk.empty() && inorder_map[node->data] > inorder_map[stk.top()->data]) {
parent = stk.top();
stk.pop();
}
parent->right = node;
}
stk.push(node);
}
return root;
}
void postorderTraversal(TreeNode* root) {
if (root == NULL) return;
stack<TreeNode*> stk;
vector<char> result;
stk.push(root);
while (!stk.empty()) {
TreeNode* node = stk.top();
stk.pop();
result.insert(result.begin(), node->data);
if (node->left) stk.push(node->left);
if (node->right) stk.push(node->right);
}
for (char ch : result) {
cout << ch << " ";
}
}
void printLeaves(TreeNode* root) {
if (root == NULL) return;
if (root->left == NULL && root->right == NULL) {
cout << root->data << " ";
}
printLeaves(root->left);
printLeaves(root->right);
}
int countNodes(TreeNode* root) {
if (root == NULL) return 0;
return 1 + countNodes(root->left) + countNodes(root->right);
}
int maxDepth(TreeNode* root) {
if (root == NULL) return 0;
return 1 + max(maxDepth(root->left), maxDepth(root->right));
}
void findPath(TreeNode* root, char target, vector<char>& path) {
if (root == NULL) return;
path.push_back(root->data);
if (root->data == target) {
for (char ch : path) {
cout << ch << " ";
}
cout << endl;
}
findPath(root->left, target, path);
findPath(root->right, target, path);
path.pop_back();
}
int main() {
vector<char> preorder = {'A', 'B', 'D', 'E', 'C', 'F', 'G'};
vector<char> inorder = {'D', 'B', 'E', 'A', 'F', 'C', 'G'};
TreeNode* root = buildTree(preorder, inorder);
cout << "后序遍历序列: ";
postorderTraversal(root);
cout << endl;
cout << "叶子节点: ";
printLeaves(root);
cout << endl;
cout << "节点个数: " << countNodes(root) << endl;
cout << "二叉树深度: " << maxDepth(root) << endl;
char target = 'D';
cout << "路径(" << target << "): ";
vector<char> path;
findPath(root, target, path);
return 0;
}
3.接1题,编写算法实现二叉树的先序线索化,并查找结点p的先序前驱结点和先序后继结点。
源码:
#include <iostream>
#include <stack>
using namespace std;
struct TreeNode {
char data;
TreeNode *left;
TreeNode *right;
bool isThreaded; // 线索化标记
TreeNode(char val) : data(val), left(NULL), right(NULL), isThreaded(false) {}
};
void preorderThreading(TreeNode* root, TreeNode*& prev) {
if (root == NULL) return;
if (root->left == NULL) {
root->left = prev;
root->isThreaded = true;
}
if (prev != NULL && prev->right == NULL) {
prev->right = root;
prev->isThreaded = true;
}
prev = root;
if (!root->isThreaded) {
preorderThreading(root->left, prev);
}
preorderThreading(root->right, prev);
}
TreeNode* preorderSuccessor(TreeNode* node) {
if (node->isThreaded) {
return node->right;
} else {
TreeNode* curr = node->right;
while (curr != NULL && !curr->isThreaded) {
curr = curr->left;
}
return curr;
}
}
TreeNode* preorderPredecessor(TreeNode* node) {
if (node->left != NULL) {
TreeNode* curr = node->left;
while (curr->right != NULL && !curr->right->isThreaded) {
curr = curr->right;
}
return curr;
} else {
return node->right;
}
}
int main() {
TreeNode *root = new TreeNode('A');
root->left = new TreeNode('B');
root->right = new TreeNode('C');
root->left->left = new TreeNode('D');
root->left->right = new TreeNode('E');
root->right->left = new TreeNode('F');
root->right->right = new TreeNode('G');
TreeNode *prev = NULL;
preorderThreading(root, prev);
TreeNode *target = root->left; // 以结点'B'为例
TreeNode *predecessor = preorderPredecessor(target);
TreeNode *successor = preorderSuccessor(target);
if (predecessor) {
cout << "结点'" << target->data << "'的先序前驱结点是: " << predecessor->data << endl;
} else {
cout << "结点'" << target->data << "'没有先序前驱结点" << endl;
}
if (successor) {
cout << "结点'" << target->data << "'的先序后继结点是: " << successor->data << endl;
} else {
cout << "结点'" << target->data << "'没有先序后继结点" << endl;
}
return 0;
}
四、心得体会:
通过实现二叉树的先序线索化算法,并查找指定结点的先序前驱和后继结点,我深刻体会到了树结构的复杂和线索化的重要性。在操作过程中,我学会了如何处理线索化和利用前序遍历进行结点的查找,进一步加深了对二叉树数据结构的理解。通过这一实践,我意识到了算法设计的精妙之处,同时也深感数据结构对于解决复杂问题的重要性。在编写代码的过程中,我不断思考优化方案,增强了自己的编程能力和逻辑思维能力。总的来说,这次实践让我收获颇丰,同时也更加坚定了我对算法与数据结构学习的重要性,激发了我对计算机科学领域的无限热情。
相关文章:
数据结构实验报告-树与二叉树
桂 林 理 工 大 学 实 验 报 告 一、实验名称: 实验6 树和二叉树 二、实验内容: 1.编写二叉树的递归遍历算法,实现:给定一棵二叉树的“扩展先序遍历序列”,创建这棵二叉树。 (1)输出二叉树的先序遍历的结点序列。 (2)输出二…...
基于Django+MySQL球馆场地预约系统的设计与实现(源码+论文+部署讲解等)
博主介绍:✌全网粉丝10W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌ 技术栈介绍:我是程序员阿龙ÿ…...
8 MQTT
8 MQTT 1、相关概念2、MQTT的操作过程3、MQTT协议3.1 固定报文3.2 连接报文3.3 确认连接请求3.4 构造订阅报文3.5 订阅确认报文3.6 发布报文3.7 其他报文 1、相关概念 MQTT [1] 全名为Message Queuing Telemetry Transport,是一种基于TCP/IP协议上传输的轻量级通信…...
【文件系统】抽象磁盘的存储结构 CHS寻址法 | sector数组 | LAB数组
目录 1.为什么要抽象 2.逻辑抽象_版本1 2.1sector数组 2.2index转化CHS 3.逻辑抽象_版本2 3.1LBA数组 3.2LAB下标转化sector下标 文件其实就是在磁盘中占有几个扇区的问题❗文件是很多个sector的数组下标❗文件是有很多块构成的❗❗文件由很多扇区构成------>文件…...
基于python旅游推荐系统(源码+论文+部署讲解等)
博主介绍:✌全网粉丝10W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌ 技术栈介绍:我是程序员阿龙ÿ…...
Mysql大单表JSON优化
优化方案 MySQL 8.0.32 中,有几种方法可以优化存储 JSON 字符串的数据表。以下是一些建议,可以帮助您减少存储空间: 使用压缩: MySQL 8.0 支持表级压缩,可以通过修改表来启用压缩。 ALTER TABLE your_table ROW_FORMATCOMPRESS…...
电脑开机启动项管理小工具,绿色免安装
HiBit Startup Manager 是一款功能强大的启动项管理工具,旨在帮助用户管理和优化计算机的自动启动程序。该软件通过添加或删除应用程序、编辑它们的属性以及管理流程、服务、任务调度程序和上下文菜单来实现这一目标。 HiBit Startup Manager 提供了以下主要功能&a…...
一例AutoHotkey语言生成的文件夹病毒分析
概述 这是一个使用AutoHotkey语言编写的文件夹病毒,使用ftp服务器来当作C2,通过U盘传播,样本很古老,原理也很简单,这种语言的样本还是第一次见到,记录一下。 样本的基本信息 PE32库: AutoIt(3.XX)[-]编译…...
【机器学习第7章——贝叶斯分类器】
机器学习第7章——贝叶斯分类器 7.贝叶斯分类器7.1贝叶斯决策论7.2 朴素贝叶斯分类器条件概率的m估计 7.3 极大似然估计优点基本原理 7.4 贝叶斯网络7.5 半朴素贝叶斯分类器7.6 EM算法7.7 EM算法实现 7.贝叶斯分类器 7.1贝叶斯决策论 一个医疗判断问题 有两个可选的假设&#…...
C++ QT开发 学习笔记(3)
C QT开发 学习笔记(3) - WPS项目 标准对话框 对话框类说明静态函数函数说明QFileDialog文件对话框getOpenFileName()选择打开一个文件getOpenFileNames()选择打开多个文件getSaveFileName()选择保存一个文件getExistingDirectory()选择一个己有的目录getOpenFileUrl()选择打幵…...
【Python实战】如何优雅地实现文字 二维码检测?
前几篇,和大家分享了如何通过 Python 和相关库,自动化处理 PDF 文档,提高办公效率。 【Python实战】自动化处理 PDF 文档,完美实现 WPS 会员功能【Python实战】如何优雅地实现 PDF 去水印?【Python实战】一键生成 PDF…...
行为型设计模式3:模板方法/备忘录/解释器/迭代器
设计模式:模板方法/备忘录/解释器/迭代器 (qq.com)...
思源笔记软件的优缺点分析
在过去一年里,我用了很多款笔记,从word文档到onenote到语雀再到思源,最后坚定的选择了思源笔记 使用感受 首先是用word文档来记笔记,主要是开始时不知道笔记软件怎么好用,等到笔记越来越膨胀的时候我发现,…...
追问试面试系列:Dubbo
欢迎来到Dubbo系列,在面试中被问到Dubbo相关的问题时,大部分都是简历上写了Dubbo,或者面试官想尝试问问你对Dubbo是否了解。 本系列主要是针对面试官通过一个点就使劲儿往下问的情况。 面试官:说说你们项目亮点 好的面试官 我们这个项目的技术亮点在于采用了Spring Cloud…...
动手学深度学习V2每日笔记(卷积层)
本文主要参考沐神的视频教程 https://www.bilibili.com/video/BV1L64y1m7Nh/p2&spm_id_from333.1007.top_right_bar_window_history.content.click&vd_sourcec7bfc6ce0ea0cbe43aa288ba2713e56d 文档教程 https://zh-v2.d2l.ai/ 本文的主要内容对沐神提供的代码中个人不…...
qcom ucsi probe
ucsi glink 注册一个ucsi 设备,和pmic glink进行通信,ucsi作为pmic glink的一个client。 lkml的patch https://lkml.org/lkml/2023/1/30/233 dtsi中一般会定义 qcom,ucsi-glink 信息,用于和驱动进行匹配 static const struct of_device_id …...
flask和redis配合
对于涉及数据提交的场景,比如更新用户信息,你可能会使用POST或PUT请求。但是,这些操作通常与直接从Redis缓存中检索数据不同,因为它们可能涉及到对后端数据库或其他存储系统的修改。并且可能需要将更新后的数据同步回Redis缓存&am…...
深度学习中的早停法
早停法(Early Stopping)是一种用于防止模型过拟合的技术,在训练过程中监视验证集(或者测试集)上的损失值。具体设立早停的限制包括两个主要参数: Patience(耐心):这是指验…...
科普文:JUC系列之多线程门闩同步器CountDownLatch的使用和源码
CountDownLatch类位于java.util.concurrent包下,利用它可以实现类似计数器的功能。比如有一个任务A,它要等待其他10个线程的任务执行完毕之后才能执行,此时就可以利用CountDownLatch来实现这种功能了。 CountDownLatch是通过一个计数器来实现…...
foreach循环和for循环在PHP中各有什么优势
在PHP中,foreach循环和for循环都是用来遍历数组的常用结构,但它们各有其优势和使用场景。 foreach循环的优势 简化代码:foreach循环提供了一种更简洁的方式来遍历数组,不需要手动控制索引或指针。易于阅读:对于简单的…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
