当前位置: 首页 > news >正文

最新口型同步技术EchoMimic部署

EchoMimic是由蚂蚁集团推出的一个 AI 驱动的口型同步技术项目,能够通过人像面部特征和音频来帮助人物“对口型”,生成逼真的动态肖像视频。

EchoMimic的技术亮点在于其创新的动画生成方法,它不仅能够通过音频和面部关键点单独驱动图像动画,还能结合这两种方式,通过音频信号和面部关键点的组合来生成逼真的“说话的头部”视频。

EchoMimic支持单独使用音频或面部标志点生成肖像视频,也支持将音频和人像照片相结合,实现更自然、流畅的对口型效果。

EchoMimic支持多语言,包括中文普通话、英语,以及适应唱歌等场景。

github项目地址:https://github.com/BadToBest/EchoMimic。

一、环境安装

1、python环境

建议安装python版本在3.10以上。

2、pip库安装

pip install torch==2.0.1+cu118 torchvision==0.15.2+cu118 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

3、模型下载

git lfs install

git clone https://huggingface.co/BadToBest/EchoMimic

、功能测试

1、运行测试

(1)python代码调用测试audio2video

import argparse
import os
import random
import platform
import subprocess
from datetime import datetime
from pathlib import Pathimport cv2
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from omegaconf import OmegaConf
from PIL import Imagefrom src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_echo import EchoUNet3DConditionModel
from src.models.whisper.audio2feature import load_audio_model
from src.pipelines.pipeline_echo_mimic import Audio2VideoPipeline
from src.utils.util import save_videos_grid, crop_and_pad
from src.models.face_locator import FaceLocator
from moviepy.editor import VideoFileClip, AudioFileClip
from facenet_pytorch import MTCNN# Check and add FFmpeg path if necessary
ffmpeg_path = os.getenv('FFMPEG_PATH')
if ffmpeg_path is None and platform.system() in ['Linux', 'Darwin']:try:result = subprocess.run(['which', 'ffmpeg'], capture_output=True, text=True)if result.returncode == 0:ffmpeg_path = result.stdout.strip()print(f"FFmpeg is installed at: {ffmpeg_path}")else:print("FFmpeg is not installed. Please download ffmpeg-static and export to FFMPEG_PATH.")print("For example: export FFMPEG_PATH=/musetalk/ffmpeg-4.4-amd64-static")except Exception as e:print(f"Error finding ffmpeg: {e}")
else:if ffmpeg_path and ffmpeg_path not in os.getenv('PATH'):print("Adding FFMPEG_PATH to PATH")os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"def parse_args():parser = argparse.ArgumentParser()parser.add_argument("--config", type=str, default="./configs/prompts/animation.yaml")parser.add_argument("-W", type=int, default=512)parser.add_argument("-H", type=int, default=512)parser.add_argument("-L", type=int, default=1200)parser.add_argument("--seed", type=int, default=420)parser.add_argument("--facemusk_dilation_ratio", type=float, default=0.1)parser.add_argument("--facecrop_dilation_ratio", type=float, default=0.5)parser.add_argument("--context_frames", type=int, default=12)parser.add_argument("--context_overlap", type=int, default=3)parser.add_argument("--cfg", type=float, default=2.5)parser.add_argument("--steps", type=int, default=30)parser.add_argument("--sample_rate", type=int, default=16000)parser.add_argument("--fps", type=int, default=24)parser.add_argument("--device", type=str, default="cuda")return parser.parse_args()def select_face(det_bboxes, probs):"""Select the largest face with a detection probability above 0.8."""if det_bboxes is None or probs is None:return Nonefiltered_bboxes = [det_bboxes[i] for i in range(len(det_bboxes)) if probs[i] > 0.8]if not filtered_bboxes:return Nonereturn max(filtered_bboxes, key=lambda x: (x[3] - x[1]) * (x[2] - x[0]))def main():args = parse_args()config = OmegaConf.load(args.config)weight_dtype = torch.float16 if config.weight_dtype == "fp16" else torch.float32device = args.deviceif "cuda" in device and not torch.cuda.is_available():device = "cpu"infer_config = OmegaConf.load(config.inference_config)############# Initialize models #############vae = AutoencoderKL.from_pretrained(config.pretrained_vae_path).to("cuda", dtype=weight_dtype)reference_unet = UNet2DConditionModel.from_pretrained(config.pretrained_base_model_path, subfolder="unet").to(dtype=weight_dtype, device=device)reference_unet.load_state_dict(torch.load(config.reference_unet_path, map_location="cpu"))unet_kwargs = infer_config.unet_additional_kwargs or {}denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d(config.pretrained_base_model_path,config.motion_module_path if os.path.exists(config.motion_module_path) else "",subfolder="unet",unet_additional_kwargs=unet_kwargs).to(dtype=weight_dtype, device=device)denoising_unet.load_state_dict(torch.load(config.denoising_unet_path, map_location="cpu"), strict=False)face_locator = FaceLocator(320, conditioning_channels=1, block_out_channels=(16, 32, 96, 256)).to(dtype=weight_dtype, device="cuda")face_locator.load_state_dict(torch.load(config.face_locator_path))audio_processor = load_audio_model(model_path=config.audio_model_path, device=device)face_detector = MTCNN(image_size=320, margin=0, min_face_size=20, thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True, device=device)############# Initiate pipeline #############scheduler = DDIMScheduler(**OmegaConf.to_container(infer_config.noise_scheduler_kwargs))pipe = Audio2VideoPipeline(vae=vae,reference_unet=reference_unet,denoising_unet=denoising_unet,audio_guider=audio_processor,face_locator=face_locator,scheduler=scheduler,).to("cuda", dtype=weight_dtype)date_str = datetime.now().strftime("%Y%m%d")time_str = datetime.now().strftime("%H%M")save_dir_name = f"{time_str}--seed_{args.seed}-{args.W}x{args.H}"save_dir = Path(f"output/{date_str}/{save_dir_name}")save_dir.mkdir(exist_ok=True, parents=True)for ref_image_path, audio_paths in config["test_cases"].items():for audio_path in audio_paths:seed = args.seed if args.seed is not None and args.seed > -1 else random.randint(100, 1000000)generator = torch.manual_seed(seed)ref_name = Path(ref_image_path).stemaudio_name = Path(audio_path).stemfinal_fps = args.fps#### Prepare face maskface_img = cv2.imread(ref_image_path)face_mask = np.zeros((face_img.shape[0], face_img.shape[1]), dtype='uint8')det_bboxes, probs = face_detector.detect(face_img)select_bbox = select_face(det_bboxes, probs)if select_bbox is None:face_mask[:, :] = 255else:xyxy = np.round(select_bbox[:4]).astype('int')rb, re, cb, ce = xyxy[1], xyxy[3], xyxy[0], xyxy[2]r_pad = int((re - rb) * args.facemusk_dilation_ratio)c_pad = int((ce - cb) * args.facemusk_dilation_ratio)face_mask[rb - r_pad : re + r_pad, cb - c_pad : ce + c_pad] = 255r_pad_crop = int((re - rb) * args.facecrop_dilation_ratio)c_pad_crop = int((ce - cb) * args.facecrop_dilation_ratio)crop_rect = [max(0, cb - c_pad_crop), max(0, rb - r_pad_crop), min(ce + c_pad_crop, face_img.shape[1]), min(re + r_pad_crop, face_img.shape[0])]face_img = crop_and_pad(face_img, crop_rect)face_mask = crop_and_pad(face_mask, crop_rect)face_img = cv2.resize(face_img, (args.W, args.H))face_mask = cv2.resize(face_mask, (args.W, args.H))ref_image_pil = Image.fromarray(face_img[:, :, [2, 1, 0]])face_mask_tensor = torch.Tensor(face_mask).to(dtype=weight_dtype, device="cuda").unsqueeze(0).unsqueeze(0).unsqueeze(0) / 255.0video = pipe(ref_image_pil,audio_path,face_mask_tensor,width=args.W,height=args.H,duration=args.L,num_inference_steps=args.steps,cfg_scale=args.cfg,generator=generator,audio_sample_rate=args.sample_rate,context_frames=args.context_frames,fps=final_fps,context_overlap=args.context_overlap).videosvideo_save_path = save_dir / f"{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}.mp4"save_videos_grid(video, str(video_save_path), n_rows=1, fps=final_fps)# Add audio to generated videowith_audio_path = save_dir / f"{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}_withaudio.mp4"video_clip = VideoFileClip(str(video_save_path))audio_clip = AudioFileClip(audio_path)final_video = video_clip.set_audio(audio_clip)final_video.write_videofile(str(with_audio_path), codec="libx264", audio_codec="aac")print(f"Saved video with audio to {with_audio_path}")if __name__ == "__main__":main()

(2)python代码调用测试audio2pose

未完......

更多详细的内容欢迎关注:杰哥新技术

相关文章:

最新口型同步技术EchoMimic部署

EchoMimic是由蚂蚁集团推出的一个 AI 驱动的口型同步技术项目,能够通过人像面部特征和音频来帮助人物“对口型”,生成逼真的动态肖像视频。 EchoMimic的技术亮点在于其创新的动画生成方法,它不仅能够通过音频和面部关键点单独驱动图像动画&a…...

程序设计基础(c语言)_补充_1

1、编程应用双层循环输出九九乘法表 #include <stdio.h> #include <stdlib.h> int main() {int i,j;for(i1;i<9;i){for(j1;j<i;j)if(ji)printf("%d*%d%d",j,i,j*i);elseprintf("%d*%d%-2d ",j,i,j*i);printf("\n");}return 0…...

8.4 day bug

bug1 忘记给css变量加var 复制代码到通义千问&#xff0c;解决 bug2 这不是我的bug&#xff0c;是freecodecamp的bug 题目中“ 将 --building-color2 变量的颜色更改为 #000” “ 应改为” 将 #000 变量的颜色更改为 --building-color2 “ bug3 又忘记加var(–xxx) 还去问…...

【Material-UI】Autocomplete中的禁用选项:Disabled options

文章目录 一、简介二、基本用法三、进阶用法1. 动态禁用2. 提示禁用原因3. 复杂的禁用条件 四、最佳实践1. 一致性2. 提供反馈3. 优化性能 五、总结 Material-UI的Autocomplete组件提供了丰富的功能&#xff0c;包括禁用特定选项的能力。这一特性对于限制用户选择、提供更好的用…...

Pytest测试报告生成专题

在 pytest 中,你可以使用多个选项生成不同格式的测试报告。以下是几种常用的生成测试报告的方法: 1. 生成简单的测试结果文件 你可以使用 pytest 的 --junitxml 选项生成一个 XML 格式的测试报告,这个报告可以与 CI/CD 工具集成。 pytest --junitxml=report.xml这将在当前…...

QT 笔记

HTTPS SSL配置 下载配置 子父对象 QTimer *timer new QTimer; // QTimer inherits QObject timer->inherits("QTimer"); // returns true timer->inherits("QObject"); // returns true timer->inherits("QAbst…...

【redis 第七篇章】动态字符串

一、概述 string 类型底层实现的简单动态字符串 sds&#xff0c;是可以修改的字符串。它采用预分配冗余空间的方式来减少内存的频繁分配。 二、SDS动态字符串 动态字符串 是以 \0 为分隔符。最大容量 是 redis 主动分配的一块内存空间&#xff0c;实际存储内容 是具体的存的数…...

rk3588 部署yolov8.rknn

本文从步骤来记录在rk3588芯片上部署yolov8模型 主机&#xff1a;windows10 VMware Workstation 16 Pro 硬件&#xff1a;RK3588 EVB板 模型&#xff1a; RK3588.rknn 软件开发环境&#xff1a; c cmake step1: 主机上执行&#xff1a; 将rknn_model_zoo 工程文件下载…...

【正点原子i.MX93开发板试用连载体验】中文提示词的训练

本文首发于电子发烧友论坛&#xff1a;【正点原子i.MX93开发板试用连载体验】基于深度学习的语音本地控制 - 正点原子学习小组 - 电子技术论坛 - 广受欢迎的专业电子论坛! 好久没有更新了&#xff0c;今天再来更新一下。 我们用前面提到的录音工具录制了自己的中文语音&#…...

WordPress资源下载类主题 CeoMax-Pro_v7.6绕授权开心版

CeoMax-Pro强大的功能 在不久的将来Ta能实现你一切幻想&#xff01;我们也在为此而不断努力。适用于资源站、下载站、交易站、素材站、源码站、课程站、cms等等等等&#xff0c;Ta 为追求极致的你而生。多风格多样式多类型多行业多功能 源码下载&#xff1a;ceomax-pro7.6.zip…...

使用GCC编译Notepad++的插件

Notepad的本体1是支持使用MSVC和GCC编译的2&#xff0c;但是Notepad插件的官方文档3里却只给出了MSVC的编译指南4。 网上也没有找到相关的讨论&#xff0c;所以我尝试在 Windows 上使用 MinGW&#xff0c;基于 GCC-8.1.0 的 posix-sjlj 线程版本5&#xff0c;研究一下怎么编译…...

技术周总结 2024.07.29 ~ 08.04周日(MyBatis, 极限编程)

文章目录 一、08.01 周四1.1&#xff09;mybatis的 xml文件中的 ${var} 和 #{var}的区别&#xff1f; 二、08.03 周六2.1&#xff09;极限编程核心价值观核心实践实施极限编程的好处极限编程的挑战适用场景 三、08.04 周日3.1&#xff09;《计算机信息系统安全保护等级划分准则…...

C语言调试宏全面总结(六大板块)

C语言调试宏进阶篇&#xff1a;实用指南与案例解析C语言调试宏高级技巧与最佳实践C语言调试宏的深度探索与性能考量C语言调试宏在嵌入式系统中的应用与挑战C语言调试宏在多线程环境中的应用与策略C语言调试宏在并发编程中的高级应用 C语言调试宏进阶篇&#xff1a;实用指南与案…...

unity万向锁代数法解释

unity的矩阵旋转乘法顺序是yxz 旋转x的90度的矩阵: 1 0 0 0 0 -1 0 1 0旋转y和z的矩阵假设角度为y和z&#xff0c;矩阵略不写了 按顺序乘完yxz之后结果是 cos(y-z) sin(y-z) 0 0 0 -1 -sin(y-z) cos(y-z) 0这个结果和Rx(pi/2) *Rz(某个角度)的结果是一个形式&#xff0c;Rx和…...

stm32入门学习10-I2C和陀螺仪模块

&#xff08;一&#xff09;I2C通信 &#xff08;1&#xff09;通信方式 I2C是一种同步半双工的通信方式&#xff0c;同步指的是通信双方时钟为一个时钟&#xff0c;半双工指的是在同一时间只能进行接收数据或发送数据&#xff0c;其有一条时钟线&#xff08;SCL&#xff09;…...

GDB常用指令

GDB调试&#xff1a;GDB调试的是可执行文件&#xff0c;在gcc编译时加入-g参数&#xff0c;告诉gcc在编译时加入调试信息&#xff0c;这样gdb才能调试这个被编译的文件。此外还会加上-Wall参数尽量显示所有警告信息。 GDB命令格式&#xff1a; 1、start&#xff1a;程序在第一…...

Nginx 高级 扩容与高效

Nginx高级 第一部分&#xff1a;扩容 通过扩容提升整体吞吐量 1.单机垂直扩容&#xff1a;硬件资源增加 云服务资源增加 整机&#xff1a;IBM、浪潮、DELL、HP等 CPU/主板&#xff1a;更新到主流 网卡&#xff1a;10G/40G网卡 磁盘&#xff1a;SAS(SCSI) HDD&#xff08;机械…...

pythonflaskMYSQL自驾游搜索系统32127-计算机毕业设计项目选题推荐(附源码)

目 录 摘要 1 绪论 1.1研究背景 1.2爬虫技术 1.3flask框架介绍 2 1.4论文结构与章节安排 3 2 自驾游搜索系统分析 4 2.1 可行性分析 4 2.2 系统流程分析 4 2.2.1数据增加流程 5 2.3.2数据修改流程 5 2.3.3数据删除流程 5 2.3 系统功能分析 5 2.3.1 功能性分析 6 2.3.2 非功…...

C++ vector的基本使用(待补全)

std::vector 是C标准模板库(STL)中的一个非常重要的容器类&#xff0c;它提供了一种动态数组的功能。能够存储相同类型的元素序列&#xff0c;并且可以自动管理存储空间的大小&#xff0c;以适应序列大小变化&#xff0c;处理元素集合的时候很灵活 1. vector的定义 构造函数声…...

Java 属性拷贝 三种实现方式

第一种 List<OrederPayCustomer> orederPayCustomerList this.list(queryWrapper); List<CustomerResp>customerRespListnew ArrayList<>();for (OrederPayCustomer orederPayCustomer : orederPayCustomerList) {CustomerResp customerResp new Custome…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

C语言中提供的第三方库之哈希表实现

一. 简介 前面一篇文章简单学习了C语言中第三方库&#xff08;uthash库&#xff09;提供对哈希表的操作&#xff0c;文章如下&#xff1a; C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...

java高级——高阶函数、如何定义一个函数式接口类似stream流的filter

java高级——高阶函数、stream流 前情提要文章介绍一、函数伊始1.1 合格的函数1.2 有形的函数2. 函数对象2.1 函数对象——行为参数化2.2 函数对象——延迟执行 二、 函数编程语法1. 函数对象表现形式1.1 Lambda表达式1.2 方法引用&#xff08;Math::max&#xff09; 2 函数接口…...

高分辨率图像合成归一化流扩展

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 1 摘要 我们提出了STARFlow&#xff0c;一种基于归一化流的可扩展生成模型&#xff0c;它在高分辨率图像合成方面取得了强大的性能。STARFlow的主要构建块是Transformer自回归流&#xff08;TARFlow&am…...