【算法】KMP算法
应用场景
- 有一个字符串 str1 = "BBA ABCA ABCDAB ABCDABD",和一个子串 str2 = "ABCDABD"
- 现在要判断 str1 是否含有 str2,如果含有,就返回第一次出现的位置,如果不含有,则返回 -1
我们很容易想到暴力匹配算法
暴力匹配算法
如果用暴力匹配的思路,并假设现在 str1 匹配到 i 位置,子串 str2 匹配到 j 位置,则有
- 如果当前字符匹配成功(即 str1[i] == str2[j]),则 i++,j++,继续匹配下一字符
- 如果匹配失败,令 i = i - j + 1,j = 0。相当于每次匹配失败时,i 回溯,j 被置为 0
- 用暴力方法解决的话就会有大量的回溯,每次只移动一位,若是不匹配,移动到下一位接着判断,浪费了大量时间(不可行)
以下是代码实现暴力匹配
public class ViolenceMatch {public static void main(String[] args) {String str1 = "BBA ABCA ABCDAB ABCDABD";String str2 = "ABCDABD";System.out.printf("下标为%d", violenceMatch(str1, str2));}public static int violenceMatch(String str1, String str2) {char[] s1 = str1.toCharArray();char[] s2 = str2.toCharArray();int i = 0; //储存s1 的下标int j = 0; //储存s2 的下标while (i < s1.length && j < s2.length) {if (s1[i] == s2[j]) {i++;j++;} else {i = i - j + 1;j = 0;}}if (j == s2.length) {return i - j;}return -1;}
}
KMP算法
KMP算法介绍
KMP 算法利用之前判断过的信息,通过一个 next 数组,保存子串中前后最长公共子序列的长度,每次回溯时,通过 next 数组找到前面匹配过的位置,省去了大量计算时间
在学习KMP算法之前,我们先来聊一聊字符串的前缀与后缀
我们对子串 str2 建立一张《部分匹配表》
“部分匹配值”就是“前缀”和“后缀”的最长的共有元素的长度。以“ABCDABD”为例
“A”的前缀和后缀都为空集,共有元素的长度为0
“AB”的前缀为[A],后缀为[B],共有元素的长度为0
“ABC”的前缀为[A,AB],后缀为[BC,C],共有元素的长度为0
“ABCD”的前缀为[A,AB,ABC],后缀为[BCD,CD,D],共有元素的长度为0
“ABCDA”的前缀为[A,AB,ABC,ABCD],后缀为[BCDA,CDA,DA,A],共有元素为“A”,长度为 1
“ABCDAB”的前缀为[A,AB,ABC,ABCD,ABCDA],后缀为[BCDAB,CDAB,DAB,AB,B],共有元素为“AB”,长度为 1
“ABCDABD”的前缀为[A,AB,ABC,ABCD,ABCDA,ABCDAB],后缀为[BCDABD,CDABD,DABD,ABD,BD,D],共有元素的长度为 0
已知空格与 D 不匹配时,前面六个字符“ABCDAB”是匹配的。查表可知,最后一个匹配字符 B 对应的“部分匹配值”为 2,因此按照下面的公式算出向后移动的位数:
移动位数 = 已匹配的字符数 - 对应的部分匹配值
因为 6 - 2 = 4,所以将搜索词向后移动 4 位
public class KMPAlgorithm {public static void main(String[] args) {String str1 = "BBA ABCA ABCDAB ABCDABD";String str2 = "ABCDABD";int[] next = kmpNext(str2);System.out.println("str1 = " + str1);System.out.println("str2 = " + str2);System.out.println("next = " + Arrays.toString(next));int index = kmpSearch(str1, str2, next);System.out.printf("索引为%d", index);}//写出 KMP搜索算法/**** @param str1* @param str2 子串* @param next 子串对应的部分匹配表* @return 返回第一个匹配的位置,如果是 -1 就没有匹配到*/public static int kmpSearch(String str1, String str2, int[] next) {//遍历for (int i = 0, j = 0; i < str1.length(); i++) {while (j > 0 && str1.charAt(i) != str2.charAt(j)) {j = next[j-1];}if (str1.charAt(i) == str2.charAt(j)) {j++;}if (j == str2.length()) { //找到了return i - j + 1;}}return -1;}//获取到一个子串的部分匹配值表public static int[] kmpNext(String dest) {//创建一个 next 数组保存部分匹配值int[] next = new int[dest.length()];next[0] = 0; //如果字符串的长度是 1,部分匹配值就是 0for (int i = 1, j = 0; i < dest.length(); i++) {//当 dest.charAt(i) != dest.charAt(j) 我们需要从 next[j-1]获取新的 j//直到 dest.charAt(i) == dest.charAt(j) 满足时,才退出//这是 KMP算法的核心点while (j > 0 && dest.charAt(i) != dest.charAt(j)) {j = next[j-1];}//当 dest.charAt(i) == dest.charAt(j) 满足时,部分匹配值就 +1if (dest.charAt(i) == dest.charAt(j)) {j++;}next[i] = j;}return next;}
}
相关文章:

【算法】KMP算法
应用场景 有一个字符串 str1 "BBA ABCA ABCDAB ABCDABD",和一个子串 str2 "ABCDABD"现在要判断 str1 是否含有 str2,如果含有,就返回第一次出现的位置,如果不含有,则返回 -1 我们很容易想到暴力…...

nginx续1:
八、虚拟主机配置 基于域名的虚拟主机 [rootserver2 ~]# ps -au|grep nginx //查看进程 修改Nginx服务配置,添加相关虚拟主机配置如下 1. [rootproxy ~]# vim /usr/local/nginx/conf/nginx.conf 2. .. .. 3. server { 4. listen …...
循环队列和阻塞有什么关系?和生产者消费者模型又有什么关系?阻塞队列和异步日志又有什么关系
### 循环队列和阻塞队列 #### 循环队列 - **定义**: 一个固定大小的数组,通过两个指针(front 和 back)管理队列的头部和尾部元素。 - **特点**: - **循环性**: 当指针到达数组的末尾时,可以回绕到数组的开头,从而利…...

物理笔记-八年级上册
0.梦开始的地方 物理研究什么? 电学,力学,声学,光学,热学。 1.1.1长度的单位 国际基本单位制 单位转换 魔法记忆:千米-米-毫米-微米-纳米(进率都是1000) 单位换算计算方法 用科学…...

QT键盘和鼠标事件
这些事件都在QWidget 中的保护成员方法中 都是虚函数在头文件中声明了 需要类外重现实现 如果头文件中声明 类外无实现就会报错 void Widget::keyPressEvent(QKeyEvent *event) {switch (event->key()) {//获取按键case Qt::Key_W://按键wqDebug()<<"按下w"…...

文件Io编程基础
1. 标准I/O (stdio.h) stdio.h 是标准C库的头文件,包含了输入输出函数的声明。位置:/usr/include/stdio.h 2. 文件I/O操作步骤 打开文件: 使用 fopen 函数,返回 FILE* 指针。读/写操作: 使用 fread、fwrite、fgets、fputs、fprintf、fscan…...

本地项目提交到Gitee
在项目目录 右键 git bash here 可以在黑屏输入命令 也可以在项目里面 命令都是一样的 要排除哪些 git add . 添加所有文件 git commit -m "Initial commit" 提交到本地 git remote add origin https://gitee.com/xxxx/xxxx.git 添加远程仓库 …...

有了谷歌账号在登录游戏或者新APP、新设备时,要求在手机上点击通知和数字,怎么办?
有的朋友可能遇到过,自己注册或购买了谷歌账号以后,在自己的手机上可以正常登录,也完成了相关的设置,看起来一切都很完美,可以愉快地玩耍了。 但是,随后要登录一个游戏的时候(或者登录一个新的…...
rsyslog如何配置日志轮转
以下是在 Linux 系统中配置 rsyslog 日志轮转策略的一般步骤: 编辑 rsyslog 的配置文件,通常为 /etc/rsyslog.conf 或 /etc/rsyslog.d/*.conf 。 在配置文件中添加类似以下的日志轮转配置示例: $template myLogs,"/var/log/mylog-%Y%m%d…...
LLM推理入门实践:基于 Hugging Face Transformers 和 Qwen2模型 进行文本问答
文章目录 1. HuggingFace模型下载2. 模型推理:文本问答 1. HuggingFace模型下载 模型在 HuggingFace 下载,如果下载速度太慢,可以在 HuggingFace镜像网站 或 ModelScope 进行下载。 使用HuggingFace的下载命令(需要先注册Huggin…...

python:YOLO格式数据集图片和标注信息查看器
作者:CSDN _养乐多_ 本文将介绍如何实现一个可视化图片和标签信息的查看器,代码使用python实现。点击下一张和上一张可以切换图片。 文章目录 一、脚本界面二、完整代码 一、脚本界面 界面如下图所示, 二、完整代码 使用代码时࿰…...

AGI思考探究的意义、价值与乐趣 Ⅴ
搞清楚模型对知识或模式的学习与迁移对于泛化意味什么,或者说两者间的本质?相信大家对泛化性作为大语言模型LLM的突出能力已经非常了解了 - 这也是当前LLM体现出令人惊叹的通用与涌现能力的基础前提,这里不再过多赘述,但仍希望大家…...
c++: mangle命名规则
其实可用根据binutils/c++filt的源代码看。找到mangle的命名规则, 但是从网上找到了一个总结,但是github有时候上不去,摘录再次。 https://github.com/gchatelet/gcc_cpp_mangling_documentation https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling 举例: _ZN8…...

系统化学习 H264视频编码(05)码流数据及相关概念解读
说明:我们参考黄金圈学习法(什么是黄金圈法则?->模型 黄金圈法则,本文使用:why-what)来学习音H264视频编码。本系列文章侧重于理解视频编码的知识体系和实践方法,理论方面会更多地讲清楚 音视频中概念的…...

【VMware】如何演示使用U盘在VMware虚拟机上安装Windows11
一、前置准备 在开始使用U盘演示在VMware虚拟机上装Windows11前,我们需要做以下前置的准备: 已制作好的Windows引导盘;WMware软件 如何制作Windows引导盘? 推荐参考: 【建议收藏】2024年最新Windows系统重装教程&…...
HanLP和Jieba区别
HanLP和Jieba都是中文分词工具,但它们在多个方面存在区别。以下是对两者区别的详细分析: 一、开发背景与语言支持 HanLP:由大连理工大学自然语言处理与社会人文计算实验室开发,是一个开源的自然语言处理工具包。它主要使用Java语…...

荒原之梦考研:考研二战会很难吗?
考研二战是不是很难,其实很大程度上取决于我们自己,我们能否认清自己的优势,能否指定和执行合理的计划,有没有强大的心理支撑等,都是决定考研二战能否成功,或者能否比较轻松的成功的关键。 在本文中&#…...

【Git企业级开发实战指南①】Git安装、基本操作!
目录 一、Git是什么?1.1特点1.2功能1.3基本概念 二、Git安装2.1Ubuntu下安装2.2Centos下安装Git 三、Git基本操作3.1创建git本地仓库3.2配置Git3.3 工作区&暂存区&版本库3.4 实操案例3.4.1添加文件 3.5 修改文件3.6版本回退3.7查看历史操作日志3.7撤销修改3…...
Leetcode 3239. Minimum Number of Flips to Make Binary Grid Palindromic I
Leetcode 3239. Minimum Number of Flips to Make Binary Grid Palindromic I 1. 解题思路2. 代码实现 题目链接:3239. Minimum Number of Flips to Make Binary Grid Palindromic I 1. 解题思路 这一题思路上的话就是分别考察一下把所有行都变成回文所需要的fli…...
C++面试基础算法的简要介绍
C是一种广泛使用的编程语言,尤其在算法和数据结构的实现中占据重要地位。以下是对C基础算法的一些介绍,涵盖了排序、查找、搜索算法以及基本的遍历算法等方面。 排序算法 快速排序(Quick Sort) 快速排序是一种分而治之的排序算法…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...

使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent
安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...
离线语音识别方案分析
随着人工智能技术的不断发展,语音识别技术也得到了广泛的应用,从智能家居到车载系统,语音识别正在改变我们与设备的交互方式。尤其是离线语音识别,由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力,广…...

保姆级【快数学会Android端“动画“】+ 实现补间动画和逐帧动画!!!
目录 补间动画 1.创建资源文件夹 2.设置文件夹类型 3.创建.xml文件 4.样式设计 5.动画设置 6.动画的实现 内容拓展 7.在原基础上继续添加.xml文件 8.xml代码编写 (1)rotate_anim (2)scale_anim (3)translate_anim 9.MainActivity.java代码汇总 10.效果展示 逐帧…...
6️⃣Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙
Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙 一、前言:离区块链还有多远? 区块链听起来可能遥不可及,似乎是只有密码学专家和资深工程师才能涉足的领域。但事实上,构建一个区块链的核心并不复杂,尤其当你已经掌握了一门系统编程语言,比如 Go。 要真正理解区…...