当前位置: 首页 > news >正文

【算法】KMP算法

应用场景
  1. 有一个字符串 str1 = "BBA ABCA ABCDAB ABCDABD",和一个子串 str2 = "ABCDABD"
  2. 现在要判断 str1 是否含有 str2,如果含有,就返回第一次出现的位置,如果不含有,则返回 -1

我们很容易想到暴力匹配算法

暴力匹配算法

如果用暴力匹配的思路,并假设现在 str1 匹配到 i 位置,子串 str2 匹配到 j 位置,则有

  1. 如果当前字符匹配成功(即 str1[i] == str2[j]),则 i++,j++,继续匹配下一字符
  2. 如果匹配失败,令 i = i - j + 1,j = 0。相当于每次匹配失败时,i 回溯,j 被置为 0
  3. 用暴力方法解决的话就会有大量的回溯,每次只移动一位,若是不匹配,移动到下一位接着判断,浪费了大量时间(不可行)

以下是代码实现暴力匹配

public class ViolenceMatch {public static void main(String[] args) {String str1 = "BBA ABCA ABCDAB ABCDABD";String str2 = "ABCDABD";System.out.printf("下标为%d", violenceMatch(str1, str2));}public static int violenceMatch(String str1, String str2) {char[] s1 = str1.toCharArray();char[] s2 = str2.toCharArray();int i = 0;  //储存s1 的下标int j = 0;  //储存s2 的下标while (i < s1.length && j < s2.length) {if (s1[i] == s2[j]) {i++;j++;} else {i = i - j + 1;j = 0;}}if (j == s2.length) {return i - j;}return -1;}
}

KMP算法

KMP算法介绍

KMP 算法利用之前判断过的信息,通过一个 next 数组,保存子串中前后最长公共子序列的长度,每次回溯时,通过 next 数组找到前面匹配过的位置,省去了大量计算时间

在学习KMP算法之前,我们先来聊一聊字符串的前缀与后缀

我们对子串 str2 建立一张《部分匹配表》

“部分匹配值”就是“前缀”和“后缀”的最长的共有元素的长度。以“ABCDABD”为例

“A”的前缀和后缀都为空集,共有元素的长度为0

“AB”的前缀为[A],后缀为[B],共有元素的长度为0

 “ABC”的前缀为[A,AB],后缀为[BC,C],共有元素的长度为0

 “ABCD”的前缀为[A,AB,ABC],后缀为[BCD,CD,D],共有元素的长度为0

“ABCDA”的前缀为[A,AB,ABC,ABCD],后缀为[BCDA,CDA,DA,A],共有元素为“A”,长度为 1

“ABCDAB”的前缀为[A,AB,ABC,ABCD,ABCDA],后缀为[BCDAB,CDAB,DAB,AB,B],共有元素为“AB”,长度为 1

“ABCDABD”的前缀为[A,AB,ABC,ABCD,ABCDA,ABCDAB],后缀为[BCDABD,CDABD,DABD,ABD,BD,D],共有元素的长度为 0

已知空格与 D 不匹配时,前面六个字符“ABCDAB”是匹配的。查表可知,最后一个匹配字符 B 对应的“部分匹配值”为 2,因此按照下面的公式算出向后移动的位数:

移动位数 = 已匹配的字符数 - 对应的部分匹配值

因为 6 - 2 = 4,所以将搜索词向后移动 4 位

public class KMPAlgorithm {public static void main(String[] args) {String str1 = "BBA ABCA ABCDAB ABCDABD";String str2 = "ABCDABD";int[] next = kmpNext(str2);System.out.println("str1 = " + str1);System.out.println("str2 = " + str2);System.out.println("next = " + Arrays.toString(next));int index = kmpSearch(str1, str2, next);System.out.printf("索引为%d", index);}//写出 KMP搜索算法/**** @param str1* @param str2  子串* @param next  子串对应的部分匹配表* @return  返回第一个匹配的位置,如果是 -1 就没有匹配到*/public static int kmpSearch(String str1, String str2, int[] next) {//遍历for (int i = 0, j = 0; i < str1.length(); i++) {while (j > 0 && str1.charAt(i) != str2.charAt(j)) {j = next[j-1];}if (str1.charAt(i) == str2.charAt(j)) {j++;}if (j == str2.length()) {  //找到了return i - j + 1;}}return -1;}//获取到一个子串的部分匹配值表public static int[] kmpNext(String dest) {//创建一个 next 数组保存部分匹配值int[] next = new int[dest.length()];next[0] = 0;  //如果字符串的长度是 1,部分匹配值就是 0for (int i = 1, j = 0; i < dest.length(); i++) {//当 dest.charAt(i) != dest.charAt(j) 我们需要从 next[j-1]获取新的 j//直到 dest.charAt(i) == dest.charAt(j) 满足时,才退出//这是 KMP算法的核心点while (j > 0 && dest.charAt(i) != dest.charAt(j)) {j = next[j-1];}//当 dest.charAt(i) == dest.charAt(j) 满足时,部分匹配值就 +1if (dest.charAt(i) == dest.charAt(j)) {j++;}next[i] = j;}return next;}
}

相关文章:

【算法】KMP算法

应用场景 有一个字符串 str1 "BBA ABCA ABCDAB ABCDABD"&#xff0c;和一个子串 str2 "ABCDABD"现在要判断 str1 是否含有 str2&#xff0c;如果含有&#xff0c;就返回第一次出现的位置&#xff0c;如果不含有&#xff0c;则返回 -1 我们很容易想到暴力…...

nginx续1:

八、虚拟主机配置 基于域名的虚拟主机 [rootserver2 ~]# ps -au|grep nginx //查看进程 修改Nginx服务配置&#xff0c;添加相关虚拟主机配置如下 1. [rootproxy ~]# vim /usr/local/nginx/conf/nginx.conf 2. .. .. 3. server { 4. listen …...

循环队列和阻塞有什么关系?和生产者消费者模型又有什么关系?阻塞队列和异步日志又有什么关系

### 循环队列和阻塞队列 #### 循环队列 - **定义**: 一个固定大小的数组&#xff0c;通过两个指针&#xff08;front 和 back&#xff09;管理队列的头部和尾部元素。 - **特点**: - **循环性**: 当指针到达数组的末尾时&#xff0c;可以回绕到数组的开头&#xff0c;从而利…...

物理笔记-八年级上册

0.梦开始的地方 物理研究什么&#xff1f; 电学&#xff0c;力学&#xff0c;声学&#xff0c;光学&#xff0c;热学。 1.1.1长度的单位 国际基本单位制 单位转换 魔法记忆&#xff1a;千米-米-毫米-微米-纳米&#xff08;进率都是1000&#xff09; 单位换算计算方法 用科学…...

QT键盘和鼠标事件

这些事件都在QWidget 中的保护成员方法中 都是虚函数在头文件中声明了 需要类外重现实现 如果头文件中声明 类外无实现就会报错 void Widget::keyPressEvent(QKeyEvent *event) {switch (event->key()) {//获取按键case Qt::Key_W://按键wqDebug()<<"按下w"…...

文件Io编程基础

1. 标准I/O (stdio.h) stdio.h 是标准C库的头文件&#xff0c;包含了输入输出函数的声明。位置&#xff1a;/usr/include/stdio.h 2. 文件I/O操作步骤 打开文件: 使用 fopen 函数&#xff0c;返回 FILE* 指针。读/写操作: 使用 fread、fwrite、fgets、fputs、fprintf、fscan…...

本地项目提交到Gitee

在项目目录 右键 git bash here 可以在黑屏输入命令 也可以在项目里面 命令都是一样的 要排除哪些 git add . 添加所有文件 git commit -m "Initial commit" 提交到本地 git remote add origin https://gitee.com/xxxx/xxxx.git 添加远程仓库 …...

有了谷歌账号在登录游戏或者新APP、新设备时,要求在手机上点击通知和数字,怎么办?

有的朋友可能遇到过&#xff0c;自己注册或购买了谷歌账号以后&#xff0c;在自己的手机上可以正常登录&#xff0c;也完成了相关的设置&#xff0c;看起来一切都很完美&#xff0c;可以愉快地玩耍了。 但是&#xff0c;随后要登录一个游戏的时候&#xff08;或者登录一个新的…...

rsyslog如何配置日志轮转

以下是在 Linux 系统中配置 rsyslog 日志轮转策略的一般步骤&#xff1a; 编辑 rsyslog 的配置文件&#xff0c;通常为 /etc/rsyslog.conf 或 /etc/rsyslog.d/*.conf 。 在配置文件中添加类似以下的日志轮转配置示例&#xff1a; $template myLogs,"/var/log/mylog-%Y%m%d…...

LLM推理入门实践:基于 Hugging Face Transformers 和 Qwen2模型 进行文本问答

文章目录 1. HuggingFace模型下载2. 模型推理&#xff1a;文本问答 1. HuggingFace模型下载 模型在 HuggingFace 下载&#xff0c;如果下载速度太慢&#xff0c;可以在 HuggingFace镜像网站 或 ModelScope 进行下载。 使用HuggingFace的下载命令&#xff08;需要先注册Huggin…...

python:YOLO格式数据集图片和标注信息查看器

作者&#xff1a;CSDN _养乐多_ 本文将介绍如何实现一个可视化图片和标签信息的查看器&#xff0c;代码使用python实现。点击下一张和上一张可以切换图片。 文章目录 一、脚本界面二、完整代码 一、脚本界面 界面如下图所示&#xff0c; 二、完整代码 使用代码时&#xff0…...

AGI思考探究的意义、价值与乐趣 Ⅴ

搞清楚模型对知识或模式的学习与迁移对于泛化意味什么&#xff0c;或者说两者间的本质&#xff1f;相信大家对泛化性作为大语言模型LLM的突出能力已经非常了解了 - 这也是当前LLM体现出令人惊叹的通用与涌现能力的基础前提&#xff0c;这里不再过多赘述&#xff0c;但仍希望大家…...

c++: mangle命名规则

其实可用根据binutils/c++filt的源代码看。找到mangle的命名规则, 但是从网上找到了一个总结,但是github有时候上不去,摘录再次。 https://github.com/gchatelet/gcc_cpp_mangling_documentation https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling 举例: _ZN8…...

系统化学习 H264视频编码(05)码流数据及相关概念解读

说明&#xff1a;我们参考黄金圈学习法&#xff08;什么是黄金圈法则?->模型 黄金圈法则&#xff0c;本文使用&#xff1a;why-what&#xff09;来学习音H264视频编码。本系列文章侧重于理解视频编码的知识体系和实践方法&#xff0c;理论方面会更多地讲清楚 音视频中概念的…...

【VMware】如何演示使用U盘在VMware虚拟机上安装Windows11

一、前置准备 在开始使用U盘演示在VMware虚拟机上装Windows11前&#xff0c;我们需要做以下前置的准备&#xff1a; 已制作好的Windows引导盘&#xff1b;WMware软件 如何制作Windows引导盘&#xff1f; 推荐参考&#xff1a; 【建议收藏】2024年最新Windows系统重装教程&…...

HanLP和Jieba区别

HanLP和Jieba都是中文分词工具&#xff0c;但它们在多个方面存在区别。以下是对两者区别的详细分析&#xff1a; 一、开发背景与语言支持 HanLP&#xff1a;由大连理工大学自然语言处理与社会人文计算实验室开发&#xff0c;是一个开源的自然语言处理工具包。它主要使用Java语…...

荒原之梦考研:考研二战会很难吗?

考研二战是不是很难&#xff0c;其实很大程度上取决于我们自己&#xff0c;我们能否认清自己的优势&#xff0c;能否指定和执行合理的计划&#xff0c;有没有强大的心理支撑等&#xff0c;都是决定考研二战能否成功&#xff0c;或者能否比较轻松的成功的关键。 在本文中&#…...

【Git企业级开发实战指南①】Git安装、基本操作!

目录 一、Git是什么&#xff1f;1.1特点1.2功能1.3基本概念 二、Git安装2.1Ubuntu下安装2.2Centos下安装Git 三、Git基本操作3.1创建git本地仓库3.2配置Git3.3 工作区&暂存区&版本库3.4 实操案例3.4.1添加文件 3.5 修改文件3.6版本回退3.7查看历史操作日志3.7撤销修改3…...

Leetcode 3239. Minimum Number of Flips to Make Binary Grid Palindromic I

Leetcode 3239. Minimum Number of Flips to Make Binary Grid Palindromic I 1. 解题思路2. 代码实现 题目链接&#xff1a;3239. Minimum Number of Flips to Make Binary Grid Palindromic I 1. 解题思路 这一题思路上的话就是分别考察一下把所有行都变成回文所需要的fli…...

C++面试基础算法的简要介绍

C是一种广泛使用的编程语言&#xff0c;尤其在算法和数据结构的实现中占据重要地位。以下是对C基础算法的一些介绍&#xff0c;涵盖了排序、查找、搜索算法以及基本的遍历算法等方面。 排序算法 快速排序&#xff08;Quick Sort&#xff09; 快速排序是一种分而治之的排序算法…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统&#xff0c;可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析&#xff1a;自动解析Markdown文档结构PPT模板分析&#xff1a;分析PPT模板的布局和风格智能布局决策&#xff1a;匹配内容与合适的PPT布局自动…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...