当前位置: 首页 > news >正文

Python面试题:结合Python技术,如何使用PyTorch进行动态计算图构建

PyTorch 是一个流行的深度学习框架,它通过动态计算图(Dynamic Computation Graphs)来支持自动微分(Autograd)。动态计算图的特点是每次前向传播时都会构建新的计算图,这使得它非常灵活,适合处理可变长度的输入和复杂的模型结构。

以下是如何使用 PyTorch 构建动态计算图的步骤和示例:

基本步骤

  1. 导入必要的库

    • 导入 torchtorch.nn,这些是 PyTorch 的核心模块。
  2. 定义模型

    • 使用 torch.nn.Module 创建自定义模型类。在 forward 方法中定义前向传播的计算,这将动态构建计算图。
  3. 创建输入数据

    • 通过 torch.Tensor 创建输入张量。张量是 PyTorch 中的基本数据结构,支持自动微分。
  4. 前向传播

    • 将输入数据传入模型进行前向传播,计算输出。每次前向传播时,PyTorch 会自动构建一个新的计算图。
  5. 反向传播

    • 调用 backward() 方法来计算梯度。这是基于当前的计算图进行的。
  6. 更新参数

    • 使用优化器(如 torch.optim.SGD)来更新模型参数。

示例代码

以下是一个简单的线性回归示例,演示了如何使用动态计算图:

import torch
import torch.nn as nn
import torch.optim as optim# 定义一个简单的线性模型
class LinearRegressionModel(nn.Module):def __init__(self):super(LinearRegressionModel, self).__init__()self.linear = nn.Linear(1, 1)  # 输入和输出都是1维def forward(self, x):return self.linear(x)# 创建模型实例
model = LinearRegressionModel()# 损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)# 创建输入数据(例如,y = 2x + 1)
x_train = torch.tensor([[1.0], [2.0], [3.0], [4.0]], requires_grad=True)
y_train = torch.tensor([[3.0], [5.0], [7.0], [9.0]])# 训练循环
num_epochs = 100
for epoch in range(num_epochs):# 前向传播:通过输入计算预测值outputs = model(x_train)loss = criterion(outputs, y_train)# 反向传播:计算梯度optimizer.zero_grad()  # 清除之前的梯度loss.backward()  # 计算新的梯度# 更新参数optimizer.step()# 打印损失值if (epoch+1) % 10 == 0:print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')# 测试模型
with torch.no_grad():test_input = torch.tensor([[5.0]])predicted = model(test_input)print(f'Predicted value for input 5.0: {predicted.item():.4f}')

关键点解析

  • 动态计算图:在 forward 方法中,每次调用都会构建新的计算图。这意味着每次前向传播都可以自由地修改计算步骤。

  • 自动微分:通过调用 loss.backward(),PyTorch 根据计算图自动计算梯度,这个过程是动态且灵活的。

  • 优化器:通过 optimizer.step() 更新模型参数,优化器负责应用计算得到的梯度来调整模型参数以最小化损失。

这种动态计算图的方式,使得 PyTorch 在处理复杂网络结构、可变输入数据长度和灵活的模型设计时具有显著的优势。

相关文章:

Python面试题:结合Python技术,如何使用PyTorch进行动态计算图构建

PyTorch 是一个流行的深度学习框架,它通过动态计算图(Dynamic Computation Graphs)来支持自动微分(Autograd)。动态计算图的特点是每次前向传播时都会构建新的计算图,这使得它非常灵活,适合处理…...

基于RHEL7的服务器批量安装

目录 一、项目要求 二、实验环境 三、生成kickstart自动化安装脚本 四、搭建dhcp服务并测试kickstart脚本 五、搭建pxe网络安装环境实现服务器自动部署 ​编辑 六、测试 一、项目要求 1.使用kickstart编写自动化安装脚本 2.搭建dhcp服务并测试kickstart脚本 3.搭建px…...

C. Light Switches

文章目录 C. Light Switches题意:解题思路:解题代码: C. Light Switches 原题链接 题意: 房间的灯最初均为关闭状态,安装芯片后,它会每隔k分钟改变一次房间的灯光状态,即会打开灯光k分钟&…...

LabVIEW机器人神经网络运动控制系统

LabVIEW机器人神经网络运动控制系统 介绍了如何使用LabVIEW软件和中枢模式发生器(CPG)神经网络实现对舵机驱动爬壁机器人的精准运动控制。通过结合仿生控制理念与高级程序设计,本项目旨在开发一种能自动完成复杂墙面移动任务的机器人。 项目背景 现代机器人技术中…...

Qt WebEngine播放DRM音视频

Qt WebEngine播放DRM受保护视频,前提是Qt WebEngine开启音视频编码器,能够支持网页上普通视频的播放。开启音视频编码器需要自己编译源码,这里不做介绍。 什么是DRM音视频 DRM视频是指数字版权管理(Digital Rights Management&a…...

渗透小游戏,各个关卡的渗透实例

Less-1 首先,可以看见该界面,该关卡主要是SQL注入,由于对用户的输入没有做过滤,使查询语句进入到了数据库中,查询到了本不应该查询到的数据 首先,如果想要进入内部,就要绕过,首先是用…...

SpringBoot集成阿里百炼大模型(初始demo) 原子的学习日记Day01

文章目录 概要下一章SpringBoot集成阿里百炼大模型(多轮对话) 原子的学习日记Day02 整体架构流程技术名词解释集成步骤1,选择大模型以及获取自己的api-key(前面还有一步开通服务就没有展示啦!)2&#xff0c…...

高级java每日一道面试题-2024年8月06日-web篇-cookie,session,token有什么区别?

如果有遗漏,评论区告诉我进行补充 面试官: cookie,session,token有什么区别? 我回答: 在Web开发中,cookie、session和token是三种常见的用于用户身份验证和会话管理的技术。它们各自有不同的用途和优缺点,下面将详细解释: 1. Cookie 定…...

Python 图文:小白也能轻松生成精美 PDF 报告!

摘要: 还在为枯燥的数据报表发愁吗?想让你的 Python 项目报告瞬间高大上?本文将带你学习如何使用 Python 生成图文并茂的 PDF 文件,从此告别单调,让你的数据“活”起来! 一、 引言 想象一下,你正在为公司…...

AQS的ReentrantLock源码

什么是AQS(全称AbstractQueuedSynchronizer) 代表:重入锁、独占锁/共享锁、公平锁/非公平锁 是JUC包中线程阻塞、阻塞队列、唤醒、尝试获取锁的一个框架 AbstractQueuedSynchronizer是全称,是一个模板模式,一些线程…...

CSP-J 模拟题2

如果x大于45&#xff0c;则输出-1 设定一个整数now&#xff0c;他的初始值为9&#xff1b; 当x>now&#xff0c;就x-now&#xff0c;并且now--; 根据解析写代码1&#xff1a; #include <bits/stdc.h> using namespace std; int a[101010]; int main(){int x;cin>…...

途牛养车省养车平台源码 买卖新车租车二手车维修装潢共享O2O程序源码

源码采用FastAdmin框架开发&#xff0c;功能成熟完善&#xff0c;已有成功案例。 业务涵盖保险、二手车、接送、拖车、租车、保养、维修、入驻等连接线上等基础和深度服务。 采用的是“线上 车主直控社区加盟店” 模式&#xff0c;其主要考虑是布局门店有助于让目标消费用户…...

开发中遇到的gzuncompress,DomDocument等几个小问题以及一次Php上线碰到的502问题及php异常追踪

一、开发中遇到的gzuncompress,DomDocument等几个小问题记在此 1&#xff0c;昨天在命令行模式行运行一个很复杂的程序&#xff0c;一开始执行php&#xff0c;刚刚连接数据库&#xff0c;都没怎么查几条记录&#xff0c;&#xff08;publish:October 27, 2017 -Friday&#xff…...

【Material-UI】Button 组件中的基本按钮详解

文章目录 一、基本按钮变体1. 文本按钮&#xff08;Text Button&#xff09;2. 实心按钮&#xff08;Contained Button&#xff09;3. 轮廓按钮&#xff08;Outlined Button&#xff09; 二、应用场景与注意事项1. 使用场景2. 注意事项 三、总结 Material-UI 的 Button 组件是前…...

人工智能自动驾驶三维车道线检测—PersFormer模型代码详解

文章目录 1. 背景介绍2. 数据加载和预处理3. 模型结构4. Loss计算5. 总结和讨论 1. 背景介绍 梳理了PersFormer 3D Lane这篇论文对应的开源代码。 2. 数据加载和预处理 数据组织方式参考&#xff1a;自动驾驶三维车道线检测系列—OpenLane数据集介绍。 坐标系参考&#xff…...

LangChain +Streamlit+ Llama :将对话式人工智能引入您的本地设备成为可能(上篇)

&#x1f99c;️ LangChain Streamlit&#x1f525; Llama &#x1f999;&#xff1a;将对话式人工智能引入您的本地设备&#x1f92f; 将开源LLMs和LangChain集成以进行免费生成式问答&#xff08;不需要API密钥&#xff09; 在过去的几个月中&#xff0c;大型语言模型(LLMs)得…...

sql注入部分总结和复现

一个端口对应一个服务 联合查询注入 所有的程序中&#xff0c;单双引号必须成对出现 需要从这个引号里面逃出来 在后面查询内容 ?id1 要查库名&#xff0c;表名&#xff0c;列名。但是联合查询要知道有多少列&#xff0c;所以通过order by 去查询 order by # 通过二分法…...

开源企业级后台管理的快速启动引擎:Ballcat

Ballcat&#xff1a;快速搭建&#xff0c;高效管理&#xff0c;Ballcat让企业后台开发更简单。 - 精选真开源&#xff0c;释放新价值。 概览 Ballcat&#xff0c;一个专为企业级后台管理而设计的快速开发框架&#xff0c;以其高效的开发模式和全面的安全特性&#xff0c;为开发…...

FashionAI比赛-服饰属性标签识别比赛赛后总结(来自 Top14 Team)

关联比赛: FashionAI全球挑战赛—服饰属性标签识别 推荐大家看本篇博客之前&#xff0c;看一下数据集制作的方法&#xff0c;如何做一个实用的图像数据集 PS&#xff1a;我是参加完比赛之后才看的&#xff0c;看完之后&#xff0c;万马奔腾.....&#xff0c;因为发现比赛中还…...

C语言 | Leetcode C语言题解之第319题灯泡开关

题目&#xff1a; 题解&#xff1a; int bulbSwitch(int n) {return sqrt(n 0.5); }...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用&#xff1a; 方法一&#xff1a;使用 Homebrew 安装 Git&#xff08;推荐&#xff09; 步骤如下&#xff1a;打开终端&#xff08;Terminal.app&#xff09; 1.安装 Homebrew…...

在 Spring Boot 中使用 JSP

jsp&#xff1f; 好多年没用了。重新整一下 还费了点时间&#xff0c;记录一下。 项目结构&#xff1a; pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...

elementUI点击浏览table所选行数据查看文档

项目场景&#xff1a; table按照要求特定的数据变成按钮可以点击 解决方案&#xff1a; <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...

LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用

中达瑞和自2005年成立以来&#xff0c;一直在光谱成像领域深度钻研和发展&#xff0c;始终致力于研发高性能、高可靠性的光谱成像相机&#xff0c;为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...