当前位置: 首页 > news >正文

大模型应用中的思维树(Tree of Thought)是什么?

ToT

大模型应用中的思维树(Tree of Thought)是什么?

大模型,特别是基于GPT(Generative Pre-trained Transformer)架构的模型,在处理复杂任务时,通常需要依赖某种形式的推理和决策机制。思维树(Tree of Thought, ToT)是其中的一种策略,通过模拟人类思维过程中的推理路径,帮助模型进行更高效、更准确的决策。本文将详细介绍思维树的原理、重点公式以及代码示例。

什么是思维树?

思维树是一种决策树结构,其中每个节点代表一个状态或决策点,边代表从一个状态到另一个状态的转变。通过构建和搜索这棵树,模型可以系统地探索不同的思维路径,以找到最优的解决方案。这种方法在解决复杂问题时尤其有效,因为它允许模型在搜索空间中进行系统性和策略性的探索。

思维树的基本结构

一个典型的思维树由以下几个部分组成:

  • 根节点(Root Node):表示初始状态或问题的起点。
  • 内部节点(Internal Nodes):表示中间状态或中间决策点。
  • 叶节点(Leaf Nodes):表示最终状态或最终决策点。
  • 边(Edges):表示从一个节点到另一个节点的决策路径。

思维树的构建和搜索

思维树的构建和搜索过程可以类比于经典的搜索算法,如深度优先搜索(DFS)和广度优先搜索(BFS)。下面是一个简单的伪代码示例,展示了思维树的构建和搜索过程:

class TreeNode:def __init__(self, state, parent=None):self.state = stateself.parent = parentself.children = []def add_child(self, child_node):self.children.append(child_node)def build_tree(root_state):root = TreeNode(root_state)frontier = [root]while frontier:node = frontier.pop()# Generate possible next statesnext_states = generate_next_states(node.state)for state in next_states:child_node = TreeNode(state, parent=node)node.add_child(child_node)frontier.append(child_node)return rootdef generate_next_states(state):# Placeholder for generating next statesreturn []def search_tree(root):# Placeholder for tree search algorithm (DFS/BFS)pass# Example usage
initial_state = 'start'
root = build_tree(initial_state)
search_tree(root)

思维树搜索算法

为了有效地搜索思维树,我们可以使用启发式搜索算法,如A*算法。这种算法结合了深度优先搜索的系统性和广度优先搜索的全面性,通过引入启发式函数来评估每个节点的优先级,从而更快地找到最优解。

A*算法的公式

A*算法使用以下公式来评估每个节点的优先级:

f ( n ) = g ( n ) + h ( n ) f(n) = g(n) + h(n) f(n)=g(n)+h(n)

其中:

  • f ( n ) f(n) f(n) 是节点 n n n 的总评估值。
  • g ( n ) g(n) g(n) 是从起始节点到节点 n n n 的实际代价。
  • h ( n ) h(n) h(n) 是从节点 n n n 到目标节点的估计代价(启发式函数)。

启发式函数 h ( n ) h(n) h(n) 通常使用领域知识来设计,以便提供一个合理的估计。例如,在路径规划问题中,可以使用欧几里得距离或曼哈顿距离作为启发式函数。

代码示例:A*算法

下面是一个简单的A*算法的Python实现:

import heapqclass TreeNode:def __init__(self, state, parent=None, cost=0, heuristic=0):self.state = stateself.parent = parentself.cost = costself.heuristic = heuristicdef __lt__(self, other):return (self.cost + self.heuristic) < (other.cost + other.heuristic)def a_star_search(initial_state, goal_state, generate_next_states, heuristic):open_list = []closed_list = set()root = TreeNode(initial_state, cost=0, heuristic=heuristic(initial_state, goal_state))heapq.heappush(open_list, root)while open_list:current_node = heapq.heappop(open_list)if current_node.state == goal_state:return reconstruct_path(current_node)closed_list.add(current_node.state)for state, cost in generate_next_states(current_node.state):if state in closed_list:continuenew_node = TreeNode(state, parent=current_node, cost=current_node.cost + cost, heuristic=heuristic(state, goal_state))heapq.heappush(open_list, new_node)return Nonedef reconstruct_path(node):path = []while node:path.append(node.state)node = node.parentreturn path[::-1]def generate_next_states(state):# Placeholder for generating next states and their costsreturn []def heuristic(state, goal_state):# Placeholder for heuristic functionreturn 0# Example usage
initial_state = 'start'
goal_state = 'goal'
path = a_star_search(initial_state, goal_state, generate_next_states, heuristic)
print("Path found:", path)

在这个示例中,a_star_search 函数接受初始状态、目标状态、状态生成函数和启发式函数作为参数,并返回从初始状态到目标状态的最优路径。

思维树在大模型中的应用

在大模型的应用中,思维树可以用于以下几个方面:

  1. 自然语言处理(NLP):通过思维树进行语义解析和推理,帮助模型更好地理解和生成自然语言。
  2. 强化学习(RL):在策略优化过程中,使用思维树进行决策树搜索,找到最优策略。
  3. 游戏AI:在复杂的游戏环境中,通过思维树进行博弈搜索,找到最优的游戏策略。

NLP中的思维树

在NLP任务中,思维树可以帮助模型进行复杂的语义推理。例如,在问答系统中,模型可以通过构建问题的思维树,逐步推理出答案。

class TreeNode:def __init__(self, state, parent=None):self.state = stateself.parent = parentself.children = []def add_child(self, child_node):self.children.append(child_node)def build_tree(root_state, question):root = TreeNode(root_state)frontier = [root]while frontier:node = frontier.pop()next_states = generate_next_states(node.state, question)for state in next_states:child_node = TreeNode(state, parent=node)node.add_child(child_node)frontier.append(child_node)return rootdef generate_next_states(state, question):# Placeholder for generating next states based on the questionreturn []def search_tree(root, answer_criteria):# Placeholder for tree search algorithm (DFS/BFS)pass# Example usage
initial_state = 'initial_context'
question = 'What is the capital of France?'
root = build_tree(initial_state, question)
search_tree(root, lambda state: 'Paris' in state)

通俗易懂的例子-旅行规划助手

假设你正在使用一款基于大模型的旅行规划助手,这款助手能够帮助你规划一次完美的旅行。在这个过程中,思维树的应用可以大大提升规划的质量和效率。

1. 初始需求

你告诉旅行规划助手:“我计划下个月和家人一起去日本东京旅行,希望能安排一个包含著名景点、美食和住宿的行程。”

2. 思维树构建

助手接收到你的需求后,开始在内部构建一个思维树来组织和规划这次旅行的各个方面。这个思维树可能包括以下几个主要分支:

  • 景点规划

    • 东京塔
    • 浅草寺
    • 上野公园
    • …(更多景点)

    对于每个景点,助手还会进一步细化,比如开放时间、门票价格、推荐游览时间等。

  • 美食推荐

    • 寿司店
    • 拉面馆
    • 居酒屋
    • …(更多美食类型)

    助手会根据你们的口味偏好和预算推荐合适的餐厅。

  • 住宿安排

    • 酒店位置选择(如市中心、近地铁站)
    • 住宿类型(如经济型、豪华型)
    • 预订时间和价格比较
  • 交通规划

    • 机场到酒店的交通方式
    • 市内交通(地铁、公交、出租车)
    • 景点间的交通安排
3. 推理与生成

在构建好思维树后,助手会开始根据每个分支的信息进行推理和生成。比如,在景点规划分支中,助手会考虑景点的开放时间、你们的旅行天数以及每个景点的游览时间,从而给出一个合理的游览顺序。在美食推荐分支中,助手会根据你们的口味偏好(如喜欢海鲜、不喜欢辣)和预算来推荐合适的餐厅。

4. 结果输出

最终,助手会将思维树中的信息整合成一个完整的旅行计划,并以易于理解的方式呈现给你。这个计划可能包括每天的行程安排、推荐的餐厅和住宿信息、交通方式等。

结论

思维树是一种强大的工具,可以帮助大模型在复杂任务中进行有效的推理和决策。通过构建和搜索思维树,模型能够系统地探索不同的思维路径,找到最优的解决方案。结合启发式搜索算法,如A*算法,思维树在NLP、强化学习和游戏AI等领域有着广泛的应用前景。

相关文章:

大模型应用中的思维树(Tree of Thought)是什么?

大模型应用中的思维树&#xff08;Tree of Thought&#xff09;是什么&#xff1f; 大模型&#xff0c;特别是基于GPT&#xff08;Generative Pre-trained Transformer&#xff09;架构的模型&#xff0c;在处理复杂任务时&#xff0c;通常需要依赖某种形式的推理和决策机制。…...

学习记录(11):训练图片分类的算法

文章目录 一、卷积神经网络&#xff08;CNN&#xff09;架构1. ResNet&#xff08;Residual Networks&#xff09;2. DenseNet&#xff08;Densely Connected Convolutional Networks&#xff09;3. EfficientNet4. MobileNet 二、变换器&#xff08;Transformer&#xff09;架…...

上网防泄密,这些雷区不要碰!九招教你如何防泄密

李明&#xff1a;“最近看到不少关于信息泄露的新闻&#xff0c;真是让人担忧。咱们在工作中&#xff0c;稍有不慎就可能触碰到泄密的雷区啊。” 王芳&#xff1a;“确实&#xff0c;网络安全无小事。尤其是我们这种经常需要处理敏感信息的岗位&#xff0c;更得小心谨慎。那你…...

数据库篇--八股文学习第十五天| 一条SQL查询语句是如何执行的?,事务的四大特性有哪些?,数据库的事务隔离级别有哪些?

1、一条SQL查询语句是如何执行的&#xff1f; 答&#xff1a; 连接器:连接器负责跟客户端建立连接、获取权限、维持和管理连接。查询缓存: MySQL 拿到一个查询请求后&#xff0c;会先到查询缓存看看&#xff0c;之前是不是执行过这条语句。之前执行过的语句及其结果可能会以…...

elk + filebeat + kafka实验和RSync同步

elk filebeat kafka实验和RSync同步 elk filebeat kafka实验 filebeatkafkaELK实验的操作步骤&#xff1a; #在装有nginx的主机上解压filebeat压缩包 [roottest4 opt]# tar -xf filebeat-6.7.2-linux-x86_64.tar.gz #将解压后的压缩包更改名字 [roottest4 opt]# mv file…...

子类到底能继承父类中的哪些内容?

...

【超详细公式】曝光值(EV)、光圈(AV)、快门(TV)、感光度(SV)、照度(Lux)

文章目录 术语 E V A V T V − S V EV AV TV - SV EVAVTV−SV L u x 2.5 2 E V Lux 2.5 \times 2^{EV} Lux2.52EV通常环境光照度参照表 术语 术语全称中文名EVExposure Value曝光值AVAperture Value光圈值TVTime Value快门值SVSensitive Value感光值BVBrightness Value…...

【Java】增强for遍历集合。

增强for遍历 增强for底层就是迭代器。所有的单列集合和数组才能使用增强for遍历。 在循环过程中无法对集合中的元素进行修改。 package demo;import java.util.ArrayList; import java.util.Collection; import java.util.Iterator;public class submit {public static void …...

【Qt】管理创建子项目

新建项目 打开是这样&#xff0c;无法添加子项目 pro添加 TEMPLATE subdirs有了 点击添加子项目 其他项目-子目录项目 &#xff08;空的子项目&#xff0c;只有pro&#xff0c;无h、cpp&#xff09; 子目录名字 直接创建子目录下子项目 选择有无界面或者其他类型项目 …...

力扣——238.移动零

题目 思路 利用双指针&#xff0c;先找到第一个为0的地方指向&#xff0c;指针2指向下一个&#xff0c;指针1之前是已经处理好的数据&#xff0c;指针2进行遍历&#xff0c;遇到非零则与指针1数据交换&#xff0c;然后指针1。 代码 class Solution { public:void moveZeroes(…...

编程的魅力

在数字化时代&#xff0c;编程已不仅仅是计算机科学家的专属领地&#xff0c;它正逐渐渗透到我们生活的每一个角落&#xff0c;成为连接现实与虚拟、创新与传统的重要桥梁。编程&#xff0c;这一门融合了逻辑、创造与解决问题的艺术&#xff0c;正以其独特的魅力引领着新一轮的…...

想提升跨境电商运营?浏览器多开为你助力!

在日常生活中&#xff0c;我们在使用浏览器访问网站时&#xff0c;可能会遇到一个尴尬的情况&#xff1a;无法同时登录一个网站的多个账号。对于跨境电商卖家来说&#xff0c;这种情况更为常见。例如&#xff0c;当我们需要在亚马逊管理店铺时&#xff0c;我们可能已经使用A账号…...

使用QML的ListView自制树形结构图TreeView

背景 感觉QML自带的TreeView不是很好用&#xff0c;用在文件路径树形结构比较多&#xff0c;但是想用在自己数据里&#xff0c;就不太方便了&#xff0c;所以自己做一个。 用‘ListView里迭代ListView’的方法&#xff0c;制作树形结构&#xff0c;成果图&#xff1a; 代码…...

2.MySQL面试题之索引

1. 为什么索引要用 B树来实现呢&#xff0c;而不是 B 树&#xff1f; MySQL 选择使用 B 树来实现索引&#xff0c;而不是 B 树&#xff0c;主要是基于以下几个原因&#xff1a; 1.1 数据存储和访问效率 B 树&#xff1a;在 B 树中&#xff0c;数据和索引都存储在每个节点中。…...

复制CodeIgniter新版的array_group_by辅助函数

很需要php数组的group_by功能&#xff0c;发现codeIgniter4.5新版中已有这个辅助函数&#xff0c;但我用的codeIgniter4.14没有&#xff0c;又不想升级php等一系列东西&#xff0c;就想把把codeIgniter4.5中array_group_by函数复制过来用。 先试着把新版本的array_helper文件及…...

合并两个 ES (Elasticsearch) 的数据

要将两个 Elasticsearch 实例中的同一个索引(/test_index)的数据合并到一个实例中,你可以按照以下步骤操作: 假设 Elasticsearch 1 (ES1) 和 Elasticsearch 2 (ES2) 都有相同的索引 /test_index。希望将 ES2 中的数据合并到 ES1 中。步骤 导出 ES2 的数据:使用 Elasticse…...

Linux网络协议.之 tcp,udp,socket网络编程(四).之网络转换函数htonl,ntohs等介绍

字节转换函数 把给定系统所采用的字节序称为主机字节序&#xff0c;为了避免不同类别主机之间在数据交换时由于对于字 节序的不同而导致的差错&#xff0c;引入了网络字节序。 主机字节序到网络字节序 u_long htonl(u_long hostlong); u_short htons(u_short short); 网络字节…...

LXC和udev知识点

1 POSIX pthread_create原理 1&#xff09;fork()、pthread_create()、vfork()对应的系统调用分别是sys_fork()、sys_clone()、sys_vfork()&#xff0c;它们在内核中都是通过do_fork()实现的。 2&#xff09;系统中所有的进程都组织在init_task.tasks链表下面&#xff0c;每个进…...

基于springboot+vue+uniapp的智慧校园管理系统小程序

开发语言&#xff1a;Java框架&#xff1a;springbootuniappJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#…...

论文辅导 | 基于概率密度估计与时序Transformer网络的风功率日前区间预测

辅导文章 模型描述 本文所提出的时序优化Transformer 结构&#xff0c;该模型从结构上看由三部分组成&#xff1a;向量映射、编码器和解码器。编码器输入为数值天气预报数据以及相应的时间编码。解码器输入为预测日之前输出功率历史数据以及相应的时间编码。这些数据在经过向量…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业&#xff0c;项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升&#xff0c;传统的管理模式已经难以满足现代工程的需求。过去&#xff0c;许多企业依赖手工记录、口头沟通和分散的信息管理&#xff0c;导致效率低下、成本失控、风险频发。例如&#…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...