当前位置: 首页 > news >正文

Kafka基本讲解

Kafka基本讲解

一:Kafka介绍

Kafka是分布式消息队列,主要设计用于高吞吐量的数据处理和消息传输,适用于日志处理、实时数据管道等场景。Kafka作为实时数仓架构的核心组件,用于收集、缓存和分发实时数据流,支持复杂的实时数据处理,实时需求分析,实时报表等应用。

二:Kafka基本架构图

基本讲解

  • zookeeper:统一管理kafka集群

    (1)保存kafka相关的元数据

    (2)负责Kafka集群的整体协调和管理

    (3)在Kafka集群中,当某个节点(如Broker或分区领导者Leader)出现故障时,ZooKeeper能够协助进行故障检测和恢复

  • Producer:生产者

    向kafka发送消息,通过【轮询写入】方式,使得消息数据均匀分布,即:传数据给kafka。

  • Consumer:消费者

    从kafka中获取消息(数据)进行消费,一般有三种策略可选(订阅模式,正则模式,指定模式)

  • Kafka集群

    1. Broker:一台Kafka服务器一般是一个Broker【主要由该机器的核数来决定】,一个集群由多个Broker组成,一个Broker可以容纳多个Topic。

    2. Topic(主题):是数据的逻辑分类单位,用于管理和组织消息流,Topic类似于mysql数据库中的库。Topic分为多个partition存放于不同的kafka服务器上。

    3. partition(分区):每个Partition(分区)是一个有序的队列(分区有序,不能保证全局有序)

      • Leader:每个partition(分区)都有一个leader(领导者),负责处理该分区的所有读取和写入数据操作(生产者和消费者都面对leader对象进行操作)。

      • Replica:特殊的Follower。

      • Follower:每个partition(分区)含有多个follower(跟随者),主要用于与leader(领导者)同步数据,保持数据的一致性。当leader失效时,会从中选一个follower成为新的leader。

三:Kafka特点

1、多副本机制

1.1.容错性(In-Sync Replicas,同步副本集)

讲解

  • 在每个partition(分区)内部中,都含有一个leader(领导者)和多个follower(跟随者)

  • 其中可将其分为ISR队列(此处为三个)和Followers两部分。

  • 正常状态(消息数据写入队列):

    • 1、消息数据写到ISR队列中的每一个节点上(Leader和replica),当写入所有的ISR队列后,才可以进行下一个消息的写入。

    • 2、Followers中节点可以同步Leader数据,且并无时间限制(时间可长可短)。

  • Leader失效场景:

    • 当Leader失效时,会在ISR队列中选取一个作为新的Leader继续工作,同时会在Followers中选取一个进入ISR队列中
1.2.读写分离
  • Leader 负责写操作
  • I S R 中任何一个 replica 都可以读操作

2、多分区(MP,multiple partitions)

每个Topic(主题)可以被划分成多个分区(partition),每个分区在物理上可以存储在不同的Broker节点上。

主要优势

  • 低延时
  • 负载均衡:Kafka集群可以在多个Broker节点上均匀地分布分区,使得每个Broker负责处理的分区数量相对均衡【Topic(主题)分区数量最优设计:节点数*物理核数】
  • 方便在集群中集成和扩展:Kafka提供了丰富的客户端API,支持多种编程语言,如Java、Python、Go、Scala等。同时,每个partition通过调整以适应它所在的机器(水平扩展),而一个Topic又可以有多个partition组成,因此整个集群可以适应适合的数据,从而达到扩缩容效果。

3、零拷贝

数据可以直接从磁盘传输到网络接口,避免了传统I/O操作中的多次内存拷贝和上下文切换,提高数据传输效率。

4、产销解耦

基本讲解

  • Kafka作为一种分布式消息中间件。生产者只需要将数据发送到Kafka的特定主题(Topic)中,无需知道数据的具体消费者是谁;消费者只需要从Kafka订阅特定的主题,并拉取数据进行处理,无需知道数据的来源是从何而来【生产者 —> Kafka <— 消费者】

  • 生产者数量:分区数 个生产者**【轮询写入】,均匀分布**。

  • 消费者数量:分区数 个消费者一对一读取,并行消费

    => 分布式最佳效果:spark处理的算子分区数(spark并行度) = kafka的分区数(有多少个队列)【分区上限主要由"核数"决定】。

四:消费者策略(读取数据方式)

Kafka为消费者提供了三种类型的订阅消费模式:subscribe(订阅模式)SubscribePattern(正则订阅模式)assign(指定模式)

subscribe与SubscribePattern讲解

基本认知

  • subscribe(订阅模式)与SubscribePattern(正则订阅模式)原理基本一致。

  • 区别subscribe(订阅模式)适用于【单主题】SubscribePattern(正则订阅模式)适用于【多主题】

讲解

  • 客户端提供groupId和订阅的主题(topic),会先找到这个groupId为123所对应的主题(topic),其中会有记录其offset(偏移量),然后通过这个这个offset(偏移量)继续从test01中进行数据的读取操作。

assign讲解

讲解

  • Redis与客户端之间进行数据交互,会将offset(偏移量)存储于Redis中。客户端提供topic(主题)给Redis,与offset形成键值对的形式,进而可以从test01中进行数据的读取操作。

五:Kafka命令讲解(shell 控制台处理)

1、查看主题

# --bootstrap-server kafka的地址:端口号
kafka-topics.sh --list --bootstrap-server single:9092

2、创建主题

# --topic 主题名称
# --partitions 分区数
# --replication-factor 每个分区的副本数
# --bootstrap-server kafka的地址:端口号
kafka-topics.sh --create --topic test01 --partitions 1 --replication-factor 1 --bootstrap-server single:9092

3、查看主题详情

# --topic 主题名称
# --bootstrap-server kafka的地址:端口号
kafka-topics.sh --describe --topic test01 --bootstrap-server single:9092

4、创建控制台【生产者】

# --topic 主题名称
# --broker-list single:9092 => 指定主题
kafka-console-producer.sh --broker-list single:9092 --topic test01 < /root/ebs_act_log/transaction_log/part-00001

在Kafka客户端工具中

5、创建控制台【消费者】

# --bootstrap-server kafka的地址:端口号
# --topic 主题
# --property print.key=true	
kafka-console-consumer.sh --bootstrap-server single:9092 --topic test01 --property print.key=true --from-beginning

6、删除主题和数据(不能被正在生产或消费)

kafka-topics.sh --bootstrap-server single:9092 --delete --topic test01

Kafka实战(Scala操作)

Kafka实战(Scala操作)

相关文章:

Kafka基本讲解

Kafka基本讲解 一&#xff1a;Kafka介绍 Kafka是分布式消息队列&#xff0c;主要设计用于高吞吐量的数据处理和消息传输&#xff0c;适用于日志处理、实时数据管道等场景。Kafka作为实时数仓架构的核心组件&#xff0c;用于收集、缓存和分发实时数据流&#xff0c;支持复杂的…...

thinkphp6项目初始化配置方案二次修正版本

数据返回统一格式 app/BaseController.php新增文件内容在末尾,并在构造函数中实例化数据模型类 // 成功统一返回格式 function Result($data, $msg , $code 200, $httpCode 200): \think\response\Json {$res [code > $code,msg > $msg,data > $data];return j…...

XXE靶机教学

arp-scan -l主机发现 arp-scan -l 端口扫描 nmap -p- 192.168.48.139 服务探测 nmap -p80,5355 -sT -sC -sV 192.168.48.139 目录扫描 dirsearch -u http://192.168.48.139 访问robots.txt 发现两个可访问路径 burp抓包 测试是否存在xxe漏洞 <?xml version "1.…...

干货 | 2024步入数字化转型深水区,云原生业务稳定性如何保障(免费下载)

云原生业务的稳定性保障是一个涉及多个层面的复杂任务&#xff0c;以下是一些关键措施和策略&#xff0c;以确保云原生业务的高效稳定运行&#xff1a; 一、平台安全性评估与加固 云原生平台安全评估&#xff1a;对云原生平台&#xff08;如Kubernetes、Docker等&#xff09;…...

for(char c:s),std::vector<int> numbers 和std::int numbers[],.size()和.sizeof()区别

在C中当需要对某个容器或数组进行遍历时我们可以使用以下语句&#xff0c;c将会被赋值为s中的元素 for(char c:s)://s可以是任何满足条件的容器或数组for(int c:s):for(double c:s):for(float c:s):在C中我们来区分std::vector numbers {1, 2, 3, 4, 5};和std::int numbers[] …...

桌面云备份可以删除吗?安不安全

桌面云备份可以删除吗&#xff1f;答案是可以的。如果用户不需要这些备份或者想要释放存储空间&#xff0c;桌面云备份是可以进行删除的&#xff0c;并且删除桌面云备份是一个相对安全的过程&#xff0c;但需要注意以下几点来确保操作的安全性和数据的完整性。 一、桌面云备份…...

【爬虫实战】利用代理爬取电商数据

文章目录 前言工具介绍实战获取网站数据编写代码数据展示 推荐总结 前言 当今电商平台正经历着快速的转型与升级。随着技术的进步和用户需求的多样化&#xff0c;电商不仅从简单的在线购物演变为综合性的购物生态系统&#xff0c;还融合了人工智能、大数据和云计算等先进技术。…...

python如何统计列表中元素出现的次数

在 Python 中&#xff0c;可以使用多种方法来统计列表中元素出现的次数。以下是一些常用的方法&#xff1a; 方法 1: 使用 count() 方法 list 对象有一个内置的 count() 方法&#xff0c;可以直接统计某个元素在列表中出现的次数。 my_list [1, 2, 3, 2, 1, 4, 2] count_of…...

【算法】山脉数组的峰顶索引

难度&#xff1a;中等 题目描述&#xff1a; 给定一个长度为 n 的整数 山脉 数组 arr &#xff0c;其中的值递增到一个 峰值元素 然后递减。 返回峰值元素的下标。 你必须设计并实现时间复杂度为 O(log(n)) 的解决方案。 示例 1&#xff1a; 输入&#xff1a;arr [0,1,0]…...

牛客 JZ31.栈的压入,弹出序列 C++写法

牛客 JZ31.栈的压入&#xff0c;弹出序列 C写法 思路&#x1f914;&#xff1a; 创建一个栈&#xff0c;push压入序列&#xff0c;然后用栈顶跟弹出序列比&#xff0c;如果一样就出栈并且继续比较&#xff0c;不一样就再次push入栈&#xff0c;直到压入序列走完&#xff0c;如果…...

PageHelper在Mybatis的一对多表关联时total数错误

最近在学习PageHelper遇到一个bug记录一下&#xff1a; 在Mybatis的一对多表中&#xff0c;PageHelper获取的total是所有的记录数&#xff0c;而不是我想要的第一次sql的记录数。 解决方案1&#xff1a; 不要在mapper层获取一对多关联&#xff0c;在service层先获取一&#…...

(20240806)硫氧镁 / 碱式硫酸镁-混凝土

一、目录 一篇博士论文&#xff0c;5篇硕士论文&#xff0c;南京航空航天大学双一流211&#xff0c;60。余红发团队 具体涉及到 &#xff08;1&#xff09; 碱式硫酸镁水泥的混凝土应用 、&#xff08;一篇博士论文&#xff09; 有微观分析 &#xff08;2&#xff09;混…...

string类的模拟实现(C++)

一、前言 想要模拟实现一个库中的类&#xff0c;那就要首先要熟悉如何使用这个类。建议通过下面博客&#xff0c;完成对Cstring类的学习。 C的string类-CSDN博客 二、模拟实现 我们将从string的成员函数即成员变量入手&#xff0c;模拟实现string类。 成员变量 string类的…...

C++_sizeof的相关知识点

1.指针的大小永远是固定的&#xff0c;取决于处理器位数&#xff0c;32位就是 4 字节&#xff0c;64位就是 8 字节 2.数组作为函数参数时会退化为指针&#xff0c;大小要按指针的计算 int func(char array[]) {printf("sizeof%d\n", sizeof(array));printf("s…...

Istio Proxy的Envoy代理架构中,Upstream提供的功能是:

Istio Proxy的Envoy代理架构中&#xff0c;Upstream提供的功能是&#xff1a; A. 接收来自Envoy连接和请求的主机&#xff0c;并返回响应 B. 连接的一组逻辑相同的上游主机 C. 将下游主机连接到Envoy的主机&#xff0c;用来发送请求并接受响应 选择A Istio Proxy的Envoy代理架…...

LeetCode 热题 HOT 100 (015/100)【宇宙最简单版】

【栈】No. 0155 最小栈【中等】&#x1f449;力扣对应题目指路 希望对你有帮助呀&#xff01;&#xff01;&#x1f49c;&#x1f49c; 如有更好理解的思路&#xff0c;欢迎大家留言补充 ~ 一起加油叭 &#x1f4a6; 欢迎关注、订阅专栏 【力扣详解】谢谢你的支持&#xff01; …...

【HarmonyOS】鸿蒙应用实现截屏

【HarmonyOS】鸿蒙应用实现截屏 组件截屏 通过componentSnapshot的get函数&#xff0c;将需要截图的组件设置id传进去即可。 import { componentSnapshot } from kit.ArkUI; import { image } from kit.ImageKit;/*** 截图*/ Entry Component Preview struct SnapShotPage {S…...

Conda包依赖侦探:conda inspect命令全解析

Conda包依赖侦探&#xff1a;conda inspect命令全解析 在Conda环境中&#xff0c;管理包及其依赖关系是一项重要任务。conda inspect命令是一个强大的工具&#xff0c;它可以提供包的详细信息&#xff0c;包括依赖关系、链接、版本等。这对于诊断环境问题、理解包的依赖结构以…...

数模——灰色关联分析算法

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 文章目录 前言 一、基本概念了解 1.什么是灰色系统&#xff1f; 2.什么是关联分析&#xff1f; 二、模型原理 三、建模过程 1.找母序列&#xff08;参考序列&am…...

Python爬虫技术 第27节 API和RESTful服务

Python 爬虫技术是一种自动化获取网页内容的方法&#xff0c;通常用于数据收集、信息抽取或自动化测试。在讲解 Python 爬虫技术时&#xff0c;我们通常会涉及到以下几个关键概念&#xff1a; HTTP 请求&#xff1a;爬虫通过发送 HTTP 请求来获取网页内容&#xff0c;这是爬虫与…...

音视频入门基础:WAV专题(4)——FFmpeg源码中获取WAV文件音频压缩编码格式、采样频率、声道数量、采样位数、码率的实现

音视频入门基础&#xff1a;WAV专题系列文章&#xff1a; 音视频入门基础&#xff1a;WAV专题&#xff08;1&#xff09;——使用FFmpeg命令生成WAV音频文件 音视频入门基础&#xff1a;WAV专题&#xff08;2&#xff09;——WAV格式简介 音视频入门基础&#xff1a;WAV专题…...

环境变量在Conda中的魔法:控制包安装的秘诀

环境变量在Conda中的魔法&#xff1a;控制包安装的秘诀 Conda不仅是Python和其他语言包的包管理器&#xff0c;它还是一个强大的环境管理器。在使用Conda时&#xff0c;环境变量可以极大地增强其功能&#xff0c;允许用户控制包的安装过程&#xff0c;实现定制化的安装策略。本…...

VS Code C/C++ MSVC编译器

官方教程 通过快捷方式打开VS Code是编译不了的,需要对tasks.json修改(Tasks: Configure default build task) 先创建tasks.json 复制这段配置到tasks.json,记得修改VsDevCmd.bat的路径 {"version": "2.0.0","windows": {"options"…...

【技巧】IDEA 个性化配置

【技巧】IDEA 个性化配置 自动补全 关闭大小写区分 自动导包 插件 Rainbow Brackets 彩色括号 更容易区分是哪个括号...

`pytest` 中一些常用的选项

下面列出的参数和功能涵盖了 pytest 中一些常用的选项&#xff0c;但 pytest 还有许多其他参数和功能。以下是一些补充的 pytest 命令行参数和功能&#xff1a; 其他命令行参数 测试配置 --confcutdir<path>: 只加载指定目录及其子目录中的配置文件。例如 --confcutdirs…...

fme从json中提取位置到kml中

fme从json中提取位置到kml中 简单参考,我自己要用的,越弄越复杂。 概述-模板总体结构 数据就是官方提供的数据,模板的基本节结构是读模块+转换器+写模块,最近爬取一些json文件,用到了。 1.使用json读模块读取数据 首先检查一下源数据 使用文本打开数据集,可以看到非缩…...

在Ubuntu 18.04上安装和配置pgAdmin 4服务器模式的方法

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。 简介 pgAdmin 是一个针对 PostgreSQL 及其相关数据库管理系统的开源管理和开发平台。它使用 Python 和 jQuery 编写&#xff0c;支持 P…...

NiFi :1 初识这把“十年一剑”的利器

--->更多内容&#xff0c;请移步“鲁班秘笈”&#xff01;&#xff01;<--- “现在AI和数据处理密不可分&#xff0c;80%的企业可以利用Apache NiFi轻松解决复杂的数据问题&#xff0c;快速完成场景建设。犹如花上百来块钱在家享受一顿不亚于五星级西餐厅的法式大餐。对…...

Pyside6实战教程专栏目录

Pyside6实战教程&#x1f680; 专栏目录介绍 本专栏将详细地向Python开发者展示如何利用PySide6框架创建功能丰富的桌面应用程序。无论你是刚刚接触GUI编程的新手&#xff0c;还是希望快速提升自己技能水平的进阶用户&#xff0c;本文都将为你提供一系列简单易懂的教程&#xf…...

【Dash】使用 Dash Design Kit (DDK) 创建图表

一、Styling Your App The examples in the previous section used Dash HTML Components to build a simple app layout, but you can style your app to look more professional. This section will give a brief overview of the multiple tools that you can use to enhan…...