C++笔试练习笔记【5】:最小花费爬楼梯(有题目链接) 初识动态规划
文章目录
- 题目
- 思路
- 代码
- 动态规划简介
- **一、什么是动态规划**
- **二、动态规划的应用场景**
- **三、动态规划的基本步骤**
- **四、动态规划的优缺点**
题目
题目链接:https://www.nowcoder.com/practice/9b969a3ec20149e3b870b256ad40844e?tpld=230&tpld=39751&ru=/exam/oj

思路
有几个细节要明确

- const[i]是在离开时花费的体力所以在离开时才会加
- 根据例子我们能知道数组给了i个数我们下标到达i才算到顶,如图如果我们必须到达cost[i+1]才算登顶
动态规划:
- 状态表示:
dp[i]:到达i位置所用最小花费 - 状态转移方程

因为一次只能向上一个台阶或者两个台阶所以只有i-1,i-2两种可能。
dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
代码
#include <iostream>
using namespace std;#define N 100010int main() {int cost[N]={0};int dp[N]={0};int n;cin >> n;for(int i=0;i<n;i++)cin >> cost[i];for(int i=2;i<=n;i++)dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);cout << dp[n] << endl;return 0;
}
动态规划简介
一、什么是动态规划
动态规划(Dynamic Programming)是一种在解决多阶段决策问题时常用的算法思想。它通过将复杂问题分解成一系列相互关联的子问题,并按照一定的顺序求解这些子问题,从而避免了重复计算,提高了算法的效率。上面的题的思想就是动态规划。
动态规划的核心思想是“最优子结构”和“重叠子问题”。最优子结构意味着一个问题的最优解包含了其子问题的最优解。重叠子问题则是指在求解过程中,相同的子问题会被多次计算。
二、动态规划的应用场景
动态规划在许多领域都有广泛的应用,例如:
- 求解最短路问题,如在图中找到从一个节点到另一个节点的最短路径。
- 例如,在一个城市交通网络中,寻找从起点到终点的最短行驶路线。
- 资源分配问题,如何合理分配有限的资源以达到最优效果。
- 比如在项目管理中,合理分配人力和时间资源,以使项目能够在最短时间内完成。
- 背包问题,给定一组物品和一个背包容量,选择哪些物品放入背包能使价值最大化。
三、动态规划的基本步骤
- 定义状态表示:明确问题中的状态变量,这些变量通常用来描述子问题的解。
- 建立状态转移方程:找出不同状态之间的关系,确定如何从一个状态转移到另一个状态。
- 初始化边界条件:确定初始状态的值。
- 按照合适的顺序计算状态值:通常是从边界条件开始,逐步计算其他状态的值。
四、动态规划的优缺点
优点:
- 能够有效地降低算法的时间复杂度,避免重复计算。
- 对于具有最优子结构和重叠子问题的问题,能够得到最优解。
缺点:
- 空间复杂度可能较高,需要存储状态值。
- 状态定义和转移方程的推导可能比较困难,需要对问题有深入的理解。
总之,动态规划是一种强大的算法思想,掌握它对于解决许多复杂的优化问题具有重要意义。但在实际应用中,需要根据具体问题的特点来选择是否使用动态规划以及如何设计有效的算法。
相关文章:
C++笔试练习笔记【5】:最小花费爬楼梯(有题目链接) 初识动态规划
文章目录 题目思路代码 动态规划简介**一、什么是动态规划****二、动态规划的应用场景****三、动态规划的基本步骤****四、动态规划的优缺点** 题目 题目链接:https://www.nowcoder.com/practice/9b969a3ec20149e3b870b256ad40844e?tpld230&tpld39751&ru/…...
数据结构----------贪心算法
什么是贪心算法? 贪心算法(Greedy Algorithm)是一种在问题求解过程中,每一步都采取当前状态下最优(即最有利)的选择,从而希望导致最终的全局最优解的算法策略。 贪心算法的核心思想是做选择时&…...
C++初学(11)
不知不觉就第11篇了QWQ 11.1、指针和自由存储空间 之前提到了计算机程序在存储数据时必须跟踪的3个基本属性: (1)信息存储在何处; (2)存储的值为多少; (3)存储的信息…...
Vba选择cad中不同类型图元(Select Case True语句和like用法)
Select Case True 是一个常见的VBA编程技巧,用于在多个条件之间进行选择。具体来说,Select Case True 语句的每个 Case 语句都包含一个布尔表达式,这些表达式会逐个与 True 进行比较。当其中一个表达式的结果为 True 时,对应的代码…...
Kafka基本讲解
Kafka基本讲解 一:Kafka介绍 Kafka是分布式消息队列,主要设计用于高吞吐量的数据处理和消息传输,适用于日志处理、实时数据管道等场景。Kafka作为实时数仓架构的核心组件,用于收集、缓存和分发实时数据流,支持复杂的…...
thinkphp6项目初始化配置方案二次修正版本
数据返回统一格式 app/BaseController.php新增文件内容在末尾,并在构造函数中实例化数据模型类 // 成功统一返回格式 function Result($data, $msg , $code 200, $httpCode 200): \think\response\Json {$res [code > $code,msg > $msg,data > $data];return j…...
XXE靶机教学
arp-scan -l主机发现 arp-scan -l 端口扫描 nmap -p- 192.168.48.139 服务探测 nmap -p80,5355 -sT -sC -sV 192.168.48.139 目录扫描 dirsearch -u http://192.168.48.139 访问robots.txt 发现两个可访问路径 burp抓包 测试是否存在xxe漏洞 <?xml version "1.…...
干货 | 2024步入数字化转型深水区,云原生业务稳定性如何保障(免费下载)
云原生业务的稳定性保障是一个涉及多个层面的复杂任务,以下是一些关键措施和策略,以确保云原生业务的高效稳定运行: 一、平台安全性评估与加固 云原生平台安全评估:对云原生平台(如Kubernetes、Docker等)…...
for(char c:s),std::vector<int> numbers 和std::int numbers[],.size()和.sizeof()区别
在C中当需要对某个容器或数组进行遍历时我们可以使用以下语句,c将会被赋值为s中的元素 for(char c:s)://s可以是任何满足条件的容器或数组for(int c:s):for(double c:s):for(float c:s):在C中我们来区分std::vector numbers {1, 2, 3, 4, 5};和std::int numbers[] …...
桌面云备份可以删除吗?安不安全
桌面云备份可以删除吗?答案是可以的。如果用户不需要这些备份或者想要释放存储空间,桌面云备份是可以进行删除的,并且删除桌面云备份是一个相对安全的过程,但需要注意以下几点来确保操作的安全性和数据的完整性。 一、桌面云备份…...
【爬虫实战】利用代理爬取电商数据
文章目录 前言工具介绍实战获取网站数据编写代码数据展示 推荐总结 前言 当今电商平台正经历着快速的转型与升级。随着技术的进步和用户需求的多样化,电商不仅从简单的在线购物演变为综合性的购物生态系统,还融合了人工智能、大数据和云计算等先进技术。…...
python如何统计列表中元素出现的次数
在 Python 中,可以使用多种方法来统计列表中元素出现的次数。以下是一些常用的方法: 方法 1: 使用 count() 方法 list 对象有一个内置的 count() 方法,可以直接统计某个元素在列表中出现的次数。 my_list [1, 2, 3, 2, 1, 4, 2] count_of…...
【算法】山脉数组的峰顶索引
难度:中等 题目描述: 给定一个长度为 n 的整数 山脉 数组 arr ,其中的值递增到一个 峰值元素 然后递减。 返回峰值元素的下标。 你必须设计并实现时间复杂度为 O(log(n)) 的解决方案。 示例 1: 输入:arr [0,1,0]…...
牛客 JZ31.栈的压入,弹出序列 C++写法
牛客 JZ31.栈的压入,弹出序列 C写法 思路🤔: 创建一个栈,push压入序列,然后用栈顶跟弹出序列比,如果一样就出栈并且继续比较,不一样就再次push入栈,直到压入序列走完,如果…...
PageHelper在Mybatis的一对多表关联时total数错误
最近在学习PageHelper遇到一个bug记录一下: 在Mybatis的一对多表中,PageHelper获取的total是所有的记录数,而不是我想要的第一次sql的记录数。 解决方案1: 不要在mapper层获取一对多关联,在service层先获取一&#…...
(20240806)硫氧镁 / 碱式硫酸镁-混凝土
一、目录 一篇博士论文,5篇硕士论文,南京航空航天大学双一流211,60。余红发团队 具体涉及到 (1) 碱式硫酸镁水泥的混凝土应用 、(一篇博士论文) 有微观分析 (2)混…...
string类的模拟实现(C++)
一、前言 想要模拟实现一个库中的类,那就要首先要熟悉如何使用这个类。建议通过下面博客,完成对Cstring类的学习。 C的string类-CSDN博客 二、模拟实现 我们将从string的成员函数即成员变量入手,模拟实现string类。 成员变量 string类的…...
C++_sizeof的相关知识点
1.指针的大小永远是固定的,取决于处理器位数,32位就是 4 字节,64位就是 8 字节 2.数组作为函数参数时会退化为指针,大小要按指针的计算 int func(char array[]) {printf("sizeof%d\n", sizeof(array));printf("s…...
Istio Proxy的Envoy代理架构中,Upstream提供的功能是:
Istio Proxy的Envoy代理架构中,Upstream提供的功能是: A. 接收来自Envoy连接和请求的主机,并返回响应 B. 连接的一组逻辑相同的上游主机 C. 将下游主机连接到Envoy的主机,用来发送请求并接受响应 选择A Istio Proxy的Envoy代理架…...
LeetCode 热题 HOT 100 (015/100)【宇宙最简单版】
【栈】No. 0155 最小栈【中等】👉力扣对应题目指路 希望对你有帮助呀!!💜💜 如有更好理解的思路,欢迎大家留言补充 ~ 一起加油叭 💦 欢迎关注、订阅专栏 【力扣详解】谢谢你的支持! …...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
《C++ 模板》
目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板,就像一个模具,里面可以将不同类型的材料做成一个形状,其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式:templa…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
vulnyx Blogger writeup
信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面,gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress,说明目标所使用的cms是wordpress,访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !
我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...
