【算法】普里姆算法解决修路问题
应用场景——修路问题
1.某地有 7 个村庄(A,B,C,D,E,F,G),现在需要修路把 7 个村庄连通
2.各个村庄的距离用边线表示(权),比如 A - B 距离 5 公里
3.问:如何修路保证各个村庄都能连通,并且修建公路的总里程最少?

思路
尽可能选择少的路线,并且每条路线最小,保证里程数最少
最小生成树问题
修路问题的本质就是最小生成树问题,先介绍一下最小生成树(MST)
1.给定一个带权的无向连通图,如何选取一颗生成树,使树上所有边上权的总和为最小,这叫最小生成树
2.N 个顶点,一定有 N-1 条边
3.包含全部顶点
4.N-1 条边都在图中

普里姆算法介绍
一、普里姆算法求最小生成树,也就是在包含 n 个顶点的连通图中,找出只有 n-1 条边包含所有 n 个顶点的连通子图,也就是所谓的极小连通子图
二、普里姆的算法如下
- 设 G=(V,E) 是连通网,T=(U,D) 是最小生成树,V,U 是顶点集合,E,D是边的集合
- 若从顶点 u 开始构造最小生成树,则从集合 V 中取出顶点 u 放入到集合 U 中,标记顶点 v 的 visited[u]=1
- 若集合 U 中顶点 ui 与集合 V - U 中的顶点 vj 之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点 vj 加入集合 U 中,将边(ui,vj) 加入集合 D 中,标记 visited[vj]=1
- 重复步骤2,直到 U 与 V 相等,即所有顶点都被标记为访问过,此时 D 中有 n-1 条边
普里姆算法的分析
1.从 <A> 顶点开始处理 => <A,G> => 权值 2
2.从 <A,G> 开始,将 A 和 G 顶点和他们相邻的还没有访问的顶点进行处理 => <A,G,B>
3.从 <A,G,B> 开始,将 A,G,B 顶点和他们相邻的还没有访问的顶点进行处理 => <A,G,B,E>
......
6.从 <A,G,B,E,F,D> 开始,将 A,G,B,E,F,D 顶点和他们相邻的还没有访问的顶点进行处理 => <A,G,B,E,F,D,C>
public class PrimAlgorithm {public static void main(String[] args) {//测试图是否创建成功char[] data = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};int verxs = data.length;//邻接矩阵的关系使用二维数组表示,用 10000 表示两点之间不连通int[][] weight = {{10000, 5, 7, 10000, 10000, 10000, 2},{5, 10000, 10000, 9, 10000, 10000, 3},{7, 10000, 10000, 10000, 8, 10000, 10000},{10000, 9, 10000, 10000, 10000, 4, 10000},{10000, 10000, 8, 10000, 10000, 5, 4},{10000, 10000, 10000, 4, 5, 10000, 6},{2, 3, 10000, 10000, 4, 6, 10000}};//创建一个 MGraph 对象MGraph graph = new MGraph(verxs);//创建一个 MinTree 对象MinTree minTree = new MinTree();minTree.createGraph(graph, verxs, data, weight);//输出minTree.showGraph(graph);//测试普里姆算法minTree.prim(graph, 0);}
}//创建最小生成树 -> 村庄的图
class MinTree {//创建图的邻接矩阵/*** @param graph 图对象* @param verxs 图对应的顶点个数* @param data 图的各个顶点的值* @param weight 图的邻接矩阵*/public void createGraph(MGraph graph, int verxs, char[] data, int[][] weight) {for (int i = 0; i < verxs; i++) {graph.data[i] = data[i];for (int j = 0; j < verxs; j++) {graph.weight[i][j] = weight[i][j];}}}//显示图的邻接矩阵public void showGraph(MGraph graph) {for (int[] link : graph.weight) {System.out.println(Arrays.toString(link));}}//编写 prim 算法得到最小生成树/*** @param graph 图* @param v v 表示从第几个顶点开始生成*/public void prim(MGraph graph, int v) {//visited[] 标记节点是否被访问过int visited[] = new int[graph.verxs];//把当前节点标记为已访问visited[v] = 1;//h1 和 h2 记录两个顶点的下标int h1 = -1;int h2 = -1;int minWeight = 10000; //将 minWeight 初始成一个大数在后面的遍历过程中会被替换for (int k = 1; k < graph.verxs; k++) { //因为有 graph.verxs 顶点,普利姆算法结束后,有graph.verxs-1条边//确定每一次生成的子图和哪个节点最近for (int i = 0; i < graph.verxs; i++) { //i 节点表示被访问过的节点for (int j = 0; j < graph.verxs; j++) { //j 节点表示没有被访问过的节点if (visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {//替换 minWeight (寻找已经访问过的节点间的权值最小的边)minWeight = graph.weight[i][j];h1 = i;h2 = j;}}}//找到一条边是最小System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + "> 权值:" + minWeight);//将当前这个节点标记为已经访问visited[h2] = 1;//minWeight 重新设置为最大值 10000minWeight = 10000;}}
}class MGraph {int verxs; //表示图的节点个数char[] data; //存放节点数据int[][] weight; //存放边,就是我们的邻接矩阵public MGraph(int verxs) {this.verxs = verxs;data = new char[verxs];weight = new int[verxs][verxs];}
}相关文章:
【算法】普里姆算法解决修路问题
应用场景——修路问题 1.某地有 7 个村庄(A,B,C,D,E,F,G),现在需要修路把 7 个村庄连通 2.各个村庄的距离用边线表示(权),比如 A - …...
Python 之Scikit-learn(二) -- Scikit-learn标准化数据
在机器学习中,数据标准化是一项关键的预处理步骤。标准化(Standardization)是将数据转换为具有均值为0和标准差为1的分布。这样可以确保特征在相同的尺度上,有助于提升某些机器学习算法的性能和稳定性。 Scikit-learn提供了一个简…...
机械学习—零基础学习日志(python编程)
零基础为了学人工智能,正在艰苦的学习 昨天给高等数学的学习按下暂停键,现在开始学习python编程。 我学习的思路是直接去阿里云的AI学习课堂里面学习。 整体感觉,阿里云的AI课堂还是有一些乱,早期课程和新出内容没有更新和归档…...
WEB应用(十三)---RCE
什么是RCE? Remote Command/Code Execute,远程命令或代码执行。通过构造特殊的字符串,将数据提交至Web应用程序,并利用该方式执行外部程序或系统命令实施攻击,类似于SQL注入。 Web应用程序使用了一些可以执行系统命令或…...
【云原生】Service服务暴露详细
Service服务 文章目录 Service服务一、Service介绍1.1、介绍1.2、Kubernetes中的Service 二、Service服务类型2.1、ClusterIP2.2、NodePort2.3、LadBalancer2.4、ExternalName 三、Service玩法3.1、定义Service3.2、端口定义别名3.3、多端口Service 四、Service类型4.1、Cluste…...
实名认证次数限制
在业务层实现实名认证次数限制 这个功能是通过以下步骤实现实名认证的次数限制: 每日失败尝试次数限制:限制用户每天可以尝试失败的次数。失败后的冷却时间:用户在连续失败几次后需要等待一段时间才能再次尝试。成功认证后的限制࿱…...
【如何在Python中使用pathlib模块】
在Python中使用pathlib模块主要涉及创建Path对象,并利用这些对象提供的方法来执行文件系统的各种操作。以下是一些详细的步骤和示例,帮助你了解如何在Python中有效地使用pathlib模块。 1. 导入Path类 首先,从pathlib模块中导入Path类。 fr…...
sqli-labs第一关详细解答
首先判断是否有注入点 发现and 11 和 and 12结果一样,所以应该是字符型注入,需要对单引号做闭合 做闭合后发现报错,提示Limit 0,1,那就说明存在注入点,但是要注释掉后面的limit 0,1 使用--注释掉limit 0,1后ÿ…...
分布式事务一站式解决方案-Seata
分布式事务一站式解决方案- 分布式事务一站式解决方案分布式事务产生背景三个概念Seata下载和安装实际业务模拟演示不加 GlobalTransactional 注解,正常操作下单不加 GlobalTransactional 注解,下单过程出异常或者超时了加 GlobalTransactional 注解&…...
openwrt 使用ftace工具追踪协议栈转发流程
开这四个宏 CONFIG_KERNEL_DYNAMIC_FTRACEy CONFIG_KERNEL_FTRACEy CONFIG_KERNEL_FUNCTION_GRAPH_TRACERy CONFIG_KERNEL_FUNCTION_TRACERy 如果/sys/kernel/debug/tracing没有,可以挂载 mount -t debugfs nodev /sys/kernel/debug 挂载报错: mo…...
ElasticSearch优化实战:打造高性能搜索引擎的秘籍
在当今这个大数据时代,信息的海量增长对搜索技术提出了前所未有的挑战。用户不仅需要快速准确地从数以亿计的数据中找到所需信息,还希望搜索引擎能够提供个性化和智能化的搜索体验。ElasticSearch作为市场上领先的搜索引擎,因其强大的全文搜索…...
【STL】| C++ 栈和队列(详解、容器适配器的初步引入)
目录 前言 总代码 容器适配器的引入 栈 stack 队列 queue 栈和队列用法简介 栈 队列 deque简介(了解即可) 结语 前言 今天我们要讲解的结构是栈和队列 这两个的具体实现相比于前面我们学的string、vector、list都要简单得多(因为容…...
xss漏洞(二,xss靶场搭建以及简单利用)
本文仅作为学习参考使用,本文作者对任何使用本文进行渗透攻击破坏不负任何责任。 一,环境搭建。 使用工具:PHP study,dvwa靶场。 1,GitHub上下载dvwa到PHP study的WWW文件夹内,并解压。 dvwa下载地址 …...
深度学习--------------Kaggle房价预测
目录 下载和缓存数据集访问和读取数据集总代码 数据预处理训练K折交叉验证模型选择总代码提交你的Kaggle预测提交Kaggle 下载和缓存数据集 import hashlib import os import tarfile import zipfile import requests# download传递的参数分别是数据集的名称、缓存文件夹的路径…...
cpio 命令
前言 cpio(Copy In and Out)是一种在类 Unix 操作系统中处理归档文件的多功能工具。与 tar 不同,cpio 有其独特的优势和使用场景,特别是在与其他命令结合使用时。本文将带你了解 cpio 的基础知识、用法及实际示例。 什么是 cpio…...
TreeMap自定义排序
我们都知道TreeMap可以根据key按字典升序排序。但在某些场景下,我们需要自定义排序规则,为了代码优雅一些,我们也希望在stream中groupingBy时自定义排序规则,就可以参考本文的实现。 1. 使用TreeMap默认的排序规则(按…...
我的CSDN 512天创作纪念日-20240807
机缘 在 2023 年 3 月 13 日,我撰写了第一篇技术博客《软考高级-系统分析师-案例分析-系统维护与设计模式》。那一天,我决定将自己的实战项目经验和学习心得记录下来,与更多志同道合的朋友分享。成为一名专业 IT 作者的梦想,促使我…...
微服务-实现nacos的集群和Gateway网关的实现、认证校验、解决跨域
1. nacos的集群模式 1.1 分析 nacos在企业中的使用100%都是集群模式。需要掌握nacos集群的搭建 nacos的数据存放在derby本地磁盘中,nacos集群模式会导致数据库数据不一致,使用加一层思想,修改nacos的数据库,使用mysql数据库&…...
数据库中的约束,聚合函数以及联合查询
目录 数据库中的约束 not null unique default primary key foreign key 表的设计 聚合函数(查询) 分组 联表查询(多表查询) 内连接 外连接 左外连接 右外连接 自连接 子查询 合并查询 数据库中的约束 为了保证…...
【AI大模型】Ollama+OpenWebUI+llama3本地大模型
本地部署大模型 0.引言1.部署安装1.1部署工具1.2 概念介绍1.3 ollama安装后的基本使用1.4 大模型权重下载1.4.1 ollama在线下载1.4.2 huggingFace下载大模型权重及如何使用ollama进行调用 2.带有UI界面的使用3.参考 0.引言 (1)目的 本教程主要关于开源A…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...
使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...
08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险
C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...
STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...
免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...
