数据结构-常见排序的七大排序
1.排序的概念及其运用
1.1排序的概念
排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。
内部排序:数据元素全部放在内存中的排序。
外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不断地在内外存之间移动数据的排序。
2.插入排序
2.1.1基本思想:
直接插入排序是一种简单的插入排序法,其基本思想是:
把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列 。
实际中我们玩扑克牌时,就用了插入排序的思想
2.1.2直接插入排序:
当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序,此时用array[i]的排序码与array[i-1],array[i-2],…的排序码顺序进行比较,找到插入位置即将array[i]插入,原来位置上的元素顺序后移
2.2插入排序实现
实现思路:
2.2.1实现单次插入排序
想完成整体的插入排序,完成单次最为关键
1.从第一个元素开始,该元素可以认为已经被排序
2.取下一个元素tmp,从已排序的元素序列从后往前扫描
3.如果该元素大于tmp,则将该元素移到下一位
4.重复步骤3,直到找到已排序元素中小于等于tmp的元素
5.tem插入到该元素的后面,如果已排序所有元素都大于tmp,则将tmp插入到下标为0的位置
6.重复步骤2~5
思考:while循环的条件
当我们完成最后一次循环的时候,由于end--,致最后一次end=-1;
所以:while条件
while (end >= 0)
//插入排序
void InsertSort(int* a, int n) {int end = 1;int tmp = a[end + 1];//取出end+1的值while (end >= 0) {if (tmp < a[end]) {a[end + 1] = a[end];end--;}else {break;}}//当end=-1,该值最小,取0位//当tmp>a[end],此时end+1取tmp值a[end+1] = tmp;
}
2.2.2插入排序代码
时间复杂度:最坏情况下为O(N*N),此时待排序列为逆序,或者说接近逆序
最好情况下为O(N),此时待排序列为升序,或者说接近升序。
空间复杂度:O(1)
//插入排序
void InsertSort(int* a, int n) {for (int i = 0; i < n; i++) {int end = i;int tmp = a[end + 1];//取出end+1的值while (end >= 0) {if (tmp < a[end]) {a[end + 1] = a[end];end--;}else {break;}}//当end=-1,该值最小,取0位//当tmp>a[end],此时end+1取tmp值a[end+1] = tmp;}}
3.希尔排序
希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成个 组,所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工 作。当到达=1时,所有记录在统一组内排好序。
步骤:
1.先选定一个小于N的整数gap作为第一增量,然后将所有距离为gap的元素分在同一组,并对每一组的元素进行直接插入排序。然后再取一个比第一增量小的整数作为第二增量,重复上述操作…
2.当增量的大小减到1时,就相当于整个序列被分到一组,进行一次直接插入排序,排序完成。
3.1希尔排序代码
时间复杂度平均:O(N^1.3)
空间复杂度:O(1)
gap可以为<=n的任意整数,这里的gap是按照Knuth提出的方式取值的
void ShellSort(int* a, int n) {//每次与gap+该位置的比较int gap = n;while (gap > 1) {gap = gap / 3 + 1;//gap是按照Knuth提出的方式取值的//当gap=1时,为插入排序for (size_t i = 0; i < n - gap; i++) {int end = i;int tmp = a[end + gap];while (end >= 0) {if (tmp < a[end]) {a[end + gap] = a[end];end -= gap;}else {break;}}a[end + gap] = tmp;}}
}
3.2希尔排序的特性总结:
1. 希尔排序是对直接插入排序的优化。
2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
3. 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些树中给出的希尔排序的时间复杂度都不固定
4.堆排序
由于在数据结构-堆有讲解,这里就不单独拿出来讲解,但是需要注意的是排升序要建大堆,排降序建小堆,需要可以查看下方地址
【数据结构】详解堆-CSDN博客
5.选择排序
选择排序:顾名思义每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。
5.1选择排序代码
1. 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用
2. 时间复杂度:O(N^2)
3. 空间复杂度:O(1)
void SelectSort(int* a, int n) {int begin = 0;int end = n - 1;
//首尾位置while (begin < end) {int mini = begin;//保留最大与最小值int max = end;for (int i = begin + 1; i <= end; i++) {if (a[i] > a[max]){max = i;}if (a[i] < a[mini]){mini = i;}}//避免当最大为首位置时,与最小交换,此时最大在mini位置Swap(&a[begin], &a[mini]);if (begin == max)max = mini;Swap(&a[end], &a[max]);++begin;--end;}
}
6.交换排序
基本思想:所谓交换,就是根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置,交换排序的特点是:将键值较大的记录向序列的尾部移动,键值较小的记录向序列的前部移动。
耳熟能详的是冒泡排序与快速排序
6.1 冒泡排序
//冒泡排序
void BubbleSort(int* a, int n)
{for (int j = 0; j < n; j++) {int flag = 0;//减少排序次数,如果序列为有序序列,则直接跳出循环for (int i = 0; i < n - j; i++) {if (a[i - 1] > a[i]) {Swap(&a[i - 1], &a[i]);flag = 1;}}//flag=0;说明为顺序if (flag = 0) {break;}}}
6.1.1冒泡排序的特性总结:
1. 冒泡排序是一种非常容易理解的排序
2. 时间复杂度:O(N^2)
3. 空间复杂度:O(1)
由于快排与归并排序格外重要,将单独一篇文章讲解
相关文章:

数据结构-常见排序的七大排序
1.排序的概念及其运用 1.1排序的概念 排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。 稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录…...
程序员学CFA——财务报告与分析(四)
财务报告与分析(四) 资产负债表资产负债表的构成和格式资产负债表的要素资产负债所有者权益 资产负债表的格式分层的资产负债表基于流动性的资产负债表 资产的计量属性资产负债表科目金融资产持有至到期投资交易性金融资产可供出售金融资产 商誉少数股东…...

【消息队列】kafka如何保证消息不丢失?
👏大家好!我是和风coding,希望我的文章能给你带来帮助! 🔥如果感觉博主的文章还不错的话,请👍三连支持👍一下博主哦 📝点击 我的主页 还可以看到和风的其他内容噢&#x…...
不同随机数生成的含义
torch.manual_seed(all_args.seed) torch.cuda.manual_seed(all_args.seed) torch.cuda.manual_seed_all(all_args.seed) np.random.seed(all_args.seed) random.seed(all_args.seed) 这几种随机种子设置的含义如下: torch.manual_seed(all_args.seed): 设置PyTor…...
Jar工具完全指南:从入门到精通
Jar工具完全指南:从入门到精通的详尽教程 前言 欢迎来到Jar工具的完全指南!无论你是Java编程的初学者,还是经验丰富的开发者,掌握Jar工具都是必不可少的。Jar(Java Archive)是Java生态系统中的一个核心组…...
前端使用docx-preview展示docx + 后端doc转docx
文章目录 后端 doc 转 docxdcox - preview安装导入使用注意 最近菜鸟刚搞完签字,结果需求就加了,如果合同有附件(.doc.docx),签名就是签到附件里面,没有附件才是签到那个html里面! 这里附件签名…...

Vue3 组件通信
目录 create-vue创建项目 一. 父子通信 1. 父传子 2. 子传父 二. 模版引用(通过ref获取实例对象) 1.基本使用 2.defineExpose 三. 跨层通信 - provide和inject 1. 作用和场景 2. 跨层传递普通数据 3. 跨层传递响应式数据 4. 跨层传递方法 create-vue创建项目 npm ini…...
如何在Ubuntu 14.04上安装、配置和部署Rocket.Chat
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 简介 Rocket.Chat 是一个使用 Meteor 构建的开源消息应用程序。它支持视频会议、文件共享、语音消息,具有完整的 API 等功能…...

ISO 26262中的失效率计算:IEC TR 62380-Section 15-Switches and keyboards
目录 概要 1 开关和键盘的分类 2 开关和键盘失效率的计算 2.1 Switches and keyboards 2.1.1 Base失效率 2.1.2 接触数量 2.1.3 温度循环De-rating系数 概要 IEC TR 62380《电子组件、PCBs和设备的可靠性预计通用模型》是涵盖电路、半导体分立器件、光电组件、电阻器、电…...
Linux安全与高级应用(五)深入探讨Linux Shell脚本应用:从基础到高级
文章目录 深入探讨Linux Shell脚本应用:从基础到高级引言一、Shell脚本基础知识1. Shell的作用与分类2. 编写第一个Shell脚本 二、Shell变量的使用1. 变量的类型与定义2. 引号的使用3. 位置变量与预定义变量 三、重定向与管道操作1. 重定向操作2. 管道操作 四、计划…...
Java中等题-解码方法(力扣)
一条包含字母 A-Z 的消息通过以下映射进行了 编码 : "1" -> A "2" -> B ... "25" -> Y "26" -> Z 然而,在 解码 已编码的消息时,你意识到有许多不同的方式来解码,因为有些…...

【Git】git 从入门到实战系列(二)—— Git 介绍以及安装方法
文章目录 一、前言二、git 是什么三、版本控制系统是什么四、本地 vs 集中式 vs 分布式本地版本控制系统集中式版本控制系统分布式版本控制系统 五、安装 git 一、前言 本系列上一篇文章【Git】git 从入门到实战系列(一)—— Git 的诞生,Lin…...

【QT 5 QT 6 构建工具qmake-cmake-和-软件编译器MSVCxxxvs MinGWxxx说明】
【QT 5报错:/xxx/: error: ‘class Ui::frmMain’ has no member named ‘xxx’-和-软件编译器MSVCxxxvs MinGWxxx说明】 1、前言2 、qt 中 Qmake CMake 和 QBS1-qmake2-Cmake3-QBS4-官网一些说法5-各自特点 3、软件编译套件1-Desktop Qt 6.7.2 llvm-mingw 64-bit2-…...

SD卡参数错误:深度解析与数之寻软件恢复实战
一、SD卡参数错误:数据与设备的隐形杀手 在数字化时代,SD卡作为便携存储设备,广泛应用于相机、手机、无人机及各类电子设备中,承载着人们珍贵的照片、视频、文档等重要数据。然而,SD卡在使用过程中,有时会…...
深入理解和应用RabbitMQ的Work Queues模型
文章目录 1. 场景模拟2. 消息发送3. 消息接收4. 测试5. 能者多劳6. 总结 当你在处理消息时,可能会遇到这样的问题:消息的生产速度远远大于消费速度,导致消息堆积。这时候,Work Queues(工作队列)模型就能派上…...

嵌入式面试八股文(三)·野指针产生原因和解决方法、指针函数和函数指针的区别
目录 1. 野指针产生原因和解决方法 1.1 产生的原因 1.1.1 指针未能初始化 1.1.2 指针指向的内存被释放 1.1.3 指针指向的对象被重复释放 1.2 解决方法 1.2.1 初始化指针 1.2.2 指针空置 1.2.3 避免悬挂指针 2. 指针函数和函数指针的区别 2.1 定义不同 2…...
OpenCV 中 CV_8UC1,CV_32FC3,CV_32S等参数的含义
在OpenCV中,创建图像时需要指定图像的类型,这些类型通常通过常量来表示,例如 CV_8UC1、CV_32FC3、CV_32S 等。这些常量定义了图像的数据类型和通道数,具体含义如下: CV_8UC1: CV_8U 表示每个像素由一个8位无…...
v 3 + vite + ts 自适应布局(postcss-pxtorem)
1、 当pc端、移动端H5等项目中,需要根据当前浏览器窗口或屏幕尺寸,来自适应的改变页面内元素尺寸时,就可以借助下述插件和相关配置来实现。 2、适用范围:vue3 vite ts 步骤一:相关依赖下载下载相关依赖 npm inst…...
(MTK)java文件添加简单接口并配置相应的SELinux avc 权限笔记2
文章简介 承接上一篇笔记,该份笔记是笔者深思熟虑后根据实战应用所总结出来的精华内容,该文章内容主要包括配置avc权限的使用场景以及其上下环节所需的准备。 使用场景 1.底层驱动有无配置好相应的串口 2.开启相应的selinux avc 权限 3.在framework层配置相应的 (config…...
Linux安全与高级应用(六)Linux Shell脚本编程的高级应用:条件测试与if语句的妙用
文章目录 Linux Shell脚本编程的高级应用:条件测试与if语句的妙用一、条件测试操作详解1. 字符串比较2. 整数比较3. 文件测试4. 逻辑测试 二、if语句的结构与应用1. 单分支结构2. 双分支结构3. 多分支结构 三、实际应用案例1. 需求描述2. 实现思路3. 代码实现4. 设置…...

地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
工程地质软件市场:发展现状、趋势与策略建议
一、引言 在工程建设领域,准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具,正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...

前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...
Java毕业设计:WML信息查询与后端信息发布系统开发
JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息࿰…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...