30-50K|抖音大模型|社招3轮面经
情况介绍:我主要做nlp,也涉及到多模态和强化学习。现在大环境比较差,能投的公司不是很多,比如腾讯,主要还是高级别的,所以腾讯我就没投
抖音一面
1、聊项目。
2、AUC的两种公式是?你能证明这两种等价的吗?
3、BERT-CRF中,为什么要加CRF?好处是?
4、self-attention为什么要用QKV三个矩阵,不用有什么问题?有没有哪个模型的Q和K矩阵是一样的?
5、reinforce属于on-policy还是off-policy?为什么?
6、reinforce带上baseline好处是?reinforce的loss写一下?
7、策略梯度会推导吗?简单写一下?
8、代码题(代码题一般别着急写,先跟面试官说下思路,确定了再写):
lc 46,全排列(lc表示leetcode,下同)。
lc 73,矩阵置0。
这一面我以为面试官只会问多模态,不会问强化学习,没想到这个面试官好厉害,强化学习也很懂,真的很强啊,我比较好奇,他们哪里来那么多时间看那么多领域的东西
抖音二面
1、介绍项目。
2、知识蒸馏有哪几种?你觉得哪种效果最好?
3、nlp的数据增强方法,主要有哪几种?每一种举个例子?
4、分类的损失函数为什么是交叉熵而不是mse?
5、BERT对输入文本的长度有什么限制,为什么要限制长度呢?
6、BigBird里面有哪几种注意力机制?相比原始transformer的self-attention的优势?
7、场景题:如何根据拼多多的商品数量,估计淘宝的商品数量?
8、给出emb_size, max_len, vocab_size, ff_inner_size,num_heads, 12层,求BERT参数量。
9、代码题:n皇后问题。
给我来了一道hard题目,我以为我要挂了,结果没几分钟HR告诉我过了。
抖音三面
1、简单聊项目。
2、CRF和HMM区别?CRF为什么比HMM效果好?
3、如果BERT词表很大,比如vocab_size达到几百万,怎么办?
4、快速手写一些transformer的mha(多头注意力),伪代码意思一下就行。
5、为什么对比学习中,temperature很小,而知识蒸馏的temperature比较大?
6、你觉得在抖音买东西,和淘宝、拼多多他们的区别是?(我没在抖音买过,就只能现场编。)
7、你最近看到过哪些paper?简单介绍下?
8、你觉得自己有那些优缺点?平时喜欢怎么缓解压力?
这一面的面试官很和蔼,一直笑呵呵的,后面就是闲聊了,体验很不错。
附上技术清单
在这里,我们想要强调的是:成功求职并不是一件难事,关键在于你是否做好了充分的准备。通过学习和掌握AI技术的相关知识和技能,了解面试中可能出现的问题和技巧,你就能够在面试中展现出自己的专业素养和实力,赢得面试官的青睐和认可。因此,让我们一起努力,用知识和技能武装自己,迎接AI时代的挑战和机遇吧!
有需要的朋友可以扫描下方二维码,免费获取更多相关资料!

最后,祝愿所有转行、求职的同学都能够在AI产品面试中取得优异的成绩,找到心仪的工作!加油!
大模型基础面

大模型进阶面

大模型微调面

大模型langchain面

大模型推理面

更多面试题分享

相关文章:
30-50K|抖音大模型|社招3轮面经
情况介绍:我主要做nlp,也涉及到多模态和强化学习。现在大环境比较差,能投的公司不是很多,比如腾讯,主要还是高级别的,所以腾讯我就没投 抖音一面 1、聊项目。 2、AUC的两种公式是?你能证明这…...
ChatGPT首次被植入人类大脑:帮助残障人士开启对话
马斯克在脑机接口中最强大的竞争对手Synchron有了新的技术进展,他们首次将ChatGPT整合到其脑机系统中,以使瘫痪患者更容易控制他们的数字设备。Synchron凭借其独特的脑机接口(BCI)技术脱颖而出,该技术巧妙地运用了成熟…...
数据结构-常见排序的七大排序
1.排序的概念及其运用 1.1排序的概念 排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。 稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录…...
程序员学CFA——财务报告与分析(四)
财务报告与分析(四) 资产负债表资产负债表的构成和格式资产负债表的要素资产负债所有者权益 资产负债表的格式分层的资产负债表基于流动性的资产负债表 资产的计量属性资产负债表科目金融资产持有至到期投资交易性金融资产可供出售金融资产 商誉少数股东…...
【消息队列】kafka如何保证消息不丢失?
👏大家好!我是和风coding,希望我的文章能给你带来帮助! 🔥如果感觉博主的文章还不错的话,请👍三连支持👍一下博主哦 📝点击 我的主页 还可以看到和风的其他内容噢&#x…...
不同随机数生成的含义
torch.manual_seed(all_args.seed) torch.cuda.manual_seed(all_args.seed) torch.cuda.manual_seed_all(all_args.seed) np.random.seed(all_args.seed) random.seed(all_args.seed) 这几种随机种子设置的含义如下: torch.manual_seed(all_args.seed): 设置PyTor…...
Jar工具完全指南:从入门到精通
Jar工具完全指南:从入门到精通的详尽教程 前言 欢迎来到Jar工具的完全指南!无论你是Java编程的初学者,还是经验丰富的开发者,掌握Jar工具都是必不可少的。Jar(Java Archive)是Java生态系统中的一个核心组…...
前端使用docx-preview展示docx + 后端doc转docx
文章目录 后端 doc 转 docxdcox - preview安装导入使用注意 最近菜鸟刚搞完签字,结果需求就加了,如果合同有附件(.doc.docx),签名就是签到附件里面,没有附件才是签到那个html里面! 这里附件签名…...
Vue3 组件通信
目录 create-vue创建项目 一. 父子通信 1. 父传子 2. 子传父 二. 模版引用(通过ref获取实例对象) 1.基本使用 2.defineExpose 三. 跨层通信 - provide和inject 1. 作用和场景 2. 跨层传递普通数据 3. 跨层传递响应式数据 4. 跨层传递方法 create-vue创建项目 npm ini…...
如何在Ubuntu 14.04上安装、配置和部署Rocket.Chat
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 简介 Rocket.Chat 是一个使用 Meteor 构建的开源消息应用程序。它支持视频会议、文件共享、语音消息,具有完整的 API 等功能…...
ISO 26262中的失效率计算:IEC TR 62380-Section 15-Switches and keyboards
目录 概要 1 开关和键盘的分类 2 开关和键盘失效率的计算 2.1 Switches and keyboards 2.1.1 Base失效率 2.1.2 接触数量 2.1.3 温度循环De-rating系数 概要 IEC TR 62380《电子组件、PCBs和设备的可靠性预计通用模型》是涵盖电路、半导体分立器件、光电组件、电阻器、电…...
Linux安全与高级应用(五)深入探讨Linux Shell脚本应用:从基础到高级
文章目录 深入探讨Linux Shell脚本应用:从基础到高级引言一、Shell脚本基础知识1. Shell的作用与分类2. 编写第一个Shell脚本 二、Shell变量的使用1. 变量的类型与定义2. 引号的使用3. 位置变量与预定义变量 三、重定向与管道操作1. 重定向操作2. 管道操作 四、计划…...
Java中等题-解码方法(力扣)
一条包含字母 A-Z 的消息通过以下映射进行了 编码 : "1" -> A "2" -> B ... "25" -> Y "26" -> Z 然而,在 解码 已编码的消息时,你意识到有许多不同的方式来解码,因为有些…...
【Git】git 从入门到实战系列(二)—— Git 介绍以及安装方法
文章目录 一、前言二、git 是什么三、版本控制系统是什么四、本地 vs 集中式 vs 分布式本地版本控制系统集中式版本控制系统分布式版本控制系统 五、安装 git 一、前言 本系列上一篇文章【Git】git 从入门到实战系列(一)—— Git 的诞生,Lin…...
【QT 5 QT 6 构建工具qmake-cmake-和-软件编译器MSVCxxxvs MinGWxxx说明】
【QT 5报错:/xxx/: error: ‘class Ui::frmMain’ has no member named ‘xxx’-和-软件编译器MSVCxxxvs MinGWxxx说明】 1、前言2 、qt 中 Qmake CMake 和 QBS1-qmake2-Cmake3-QBS4-官网一些说法5-各自特点 3、软件编译套件1-Desktop Qt 6.7.2 llvm-mingw 64-bit2-…...
SD卡参数错误:深度解析与数之寻软件恢复实战
一、SD卡参数错误:数据与设备的隐形杀手 在数字化时代,SD卡作为便携存储设备,广泛应用于相机、手机、无人机及各类电子设备中,承载着人们珍贵的照片、视频、文档等重要数据。然而,SD卡在使用过程中,有时会…...
深入理解和应用RabbitMQ的Work Queues模型
文章目录 1. 场景模拟2. 消息发送3. 消息接收4. 测试5. 能者多劳6. 总结 当你在处理消息时,可能会遇到这样的问题:消息的生产速度远远大于消费速度,导致消息堆积。这时候,Work Queues(工作队列)模型就能派上…...
嵌入式面试八股文(三)·野指针产生原因和解决方法、指针函数和函数指针的区别
目录 1. 野指针产生原因和解决方法 1.1 产生的原因 1.1.1 指针未能初始化 1.1.2 指针指向的内存被释放 1.1.3 指针指向的对象被重复释放 1.2 解决方法 1.2.1 初始化指针 1.2.2 指针空置 1.2.3 避免悬挂指针 2. 指针函数和函数指针的区别 2.1 定义不同 2…...
OpenCV 中 CV_8UC1,CV_32FC3,CV_32S等参数的含义
在OpenCV中,创建图像时需要指定图像的类型,这些类型通常通过常量来表示,例如 CV_8UC1、CV_32FC3、CV_32S 等。这些常量定义了图像的数据类型和通道数,具体含义如下: CV_8UC1: CV_8U 表示每个像素由一个8位无…...
v 3 + vite + ts 自适应布局(postcss-pxtorem)
1、 当pc端、移动端H5等项目中,需要根据当前浏览器窗口或屏幕尺寸,来自适应的改变页面内元素尺寸时,就可以借助下述插件和相关配置来实现。 2、适用范围:vue3 vite ts 步骤一:相关依赖下载下载相关依赖 npm inst…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...
华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)
题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...
机器学习的数学基础:线性模型
线性模型 线性模型的基本形式为: f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法,得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...
FOPLP vs CoWoS
以下是 FOPLP(Fan-out panel-level packaging 扇出型面板级封装)与 CoWoS(Chip on Wafer on Substrate)两种先进封装技术的详细对比分析,涵盖技术原理、性能、成本、应用场景及市场趋势等维度: 一、技术原…...
