论文解读(15)-UrbanGPT
加油,这一篇也是感受一下大语言模型的力量!
原文:
UrbanGPT: Spatio-Temporal Large Language Models
UrbanGPT: Spatio-Temporal Large Language Models (arxiv.org)
参考:
- 时空预测与大语言模型的奇妙碰撞!UrbanGPT: Spatio-Temporal Large Language Models_时空大语言模型-CSDN博客
- 首个智慧城市大模型UrbanGPT,全面开源开放|港大&百度 - 智源社区 (baai.ac.cn)
摘要
目标是创建一个时空语言大模型,可以在城市任务中进行很好的泛化。
1. Introduction
While current spatio-temporal neural network techniques have proven to be highly effective, it is crucial to acknowledge their strong dependence on having an abundance of labeled data in order to generate accurate predictions. However, the pervasive problem of data scarcity in practical urban sensing scenarios poses a significant challenge. For example, deploying sensors throughout the entire urban space to monitor citywide traffic volume or air quality is impractical due to the high cost involved [17, 41]. Moreover, the challenge of limited labeled data availability extends to spatiotemporal forecasting across different cities, in which acquiring labeled data for each target city becomes a daunting task [13, 38]. These issues emphasize the pressing need for novel solutions that address data scarcity and enhance the generalization capabilities of spatio-temporal models in various smart city applications.
这一段就讲述了目前的task或者说challenge:
1)稀缺标签数据和重新训练的巨大开销
2)LLMs和现有时空模型缺乏零样本场景下的泛化能力
3)如何将LLMs的出色推理能力扩展到时空预测场景
- (看来重点就在于零样本的处理)
1.2 贡献
- 首次尝试开发一种能够在不同数据集上预测各种城市现象的时空大语言模型
- 时空预测框架UrbanGPT,它使得大语言模型能够理解时空之间错综复杂的相互依赖关系
- UrbanGPT在零样本时空学习场景中具有出色的泛化能力。
2. Preliminaries
和related work 是一个意思,主要展示一些相关工作,如果有不懂的,可以看相关的内容。
- spatio-temporal data
- spatio-temporal forecasting
- spatio-temporal zero-shot learning
3. Methodology
3.1 Spatio-Temporal Dependency Encoder (时空依赖编码器)
时空编码器包括两个关键的部分:
- a gated dilated convolution layer (门控扩散卷积层)
- a multi-level correlation injection layer (多层次关联注入层)
Er:initial spatial-temporal embedding (初始化时空嵌入)(由原始数据经过一个线性层得到)
Er‘ :是Er的切片。
Wk,Wg:分别是两个一维的空洞卷积核(1-D dilated convoution kernels)
bk,bg:就是相应的bias(corresponding bias)
激活函数Sigmoid:用于控制多层卷积运算的信息保留程度。
通过编码后,就可以获得不同级别的时间依赖关系了,但是这些数据毕竟属于不同的颗粒度,或者说是不同的level。因此,还需要一个注意力相关的机制去处理一下。
多层次关联注入层:
Ws:卷积核
bs:bias
3.2 Spatio-Temporal Instruction-Tuning
时空数据-文本对齐:
这里有一点没有特别理解,
可以看一下博客中的内容:
- (应该是指引入了special tokens)
时空提示指令
- 就是prompt
时间信息包括一周的日期和时间等因素,而区域信息包括城市、行政区域和附近的兴趣点(POI)数据等
时空指令微调:
- 就是模型本身不直接生成结果,而是生成预测标记(类似像之前几篇论文一样去帮助后续计算的理解,可以理解为一种enhancement)
3.3 Model Optimization
loss计算:
- 这个就是简单的常用的回归中用的loss(好像就是交叉熵)
4. 实验
跨区域零样本预测:
跨城市零样本预测:
总体还可以,下面是消融实验,这块就直接跳过了。
5. 展望
但在未来的研究中仍然存在待解决的限制。作为第一步,我们积极收集更多种类的城市数据,以增强和完善UrbanGPT在更广泛的城市计算领域的能力。此外,理解UrbanGPT的决策过程也是重要的。虽然该模型表现出卓越的性能,但提供可解释性同样重要。未来的研究也将集中于赋予UrbanGPT模型解释其预测的能力。
- 就是可解释性的问题
相关文章:

论文解读(15)-UrbanGPT
加油,这一篇也是感受一下大语言模型的力量! 原文: UrbanGPT: Spatio-Temporal Large Language Models UrbanGPT: Spatio-Temporal Large Language Models (arxiv.org) 参考: 时空预测与大语言模型的奇妙碰撞!UrbanG…...

大数据湖体系规划与建设方案(51页PPT)
方案介绍: 大数据湖通过集中存储各种类型的数据(包括结构化、半结构化和非结构化数据),提供了更加灵活、可扩展的数据处理和分析能力。其核心理念是“存储一切,分析一切,创建所需”,即将所有数…...

8月最新ChatGPT系统源码SparkAi系统,支持AI换脸+智能体GPTs应用+AI绘画+AI视频+文档分析
一、文章序言 人工智能技术正在快速发展,AI语言模型、AI绘画和AI视频已经在多个领域得到了广泛应用。这些技术不仅在科技创新方面表现出色,还在艺术创作、内容生产和商业应用中展示出巨大的潜力。 SparkAi创作系统是一款基于ChatGPT和Midjourney开发的…...
Linux知识复习第3期
目录 网络管理 (1)查看IP信息: (2)配置临时生效的网络连接 (3)修改配置文件配置网络连接(network服务) (4)shell脚本批量IP设置 网络管理 Linux网络管理-CSDN博客 (1)查看IP信息: route -n ip addr (2)配置临时生效的网络连接 ip -4…...

【独家原创】基于NRBO-Transformer多特征分类预测【24年新算法】 (多输入单输出)Matlab代码
【独家原创】NRBO-Transformer分类 Matlab代码 基于牛顿拉夫逊优化算法优化Transformer的数据分类预测,Matlab代码,可直接运行,适合小白新手 NRBO优化的超参数为:自注意力机制中的头数、正则化系数、初始化学习率 1.程序已经调试…...
Debezium日常分享系列之:Debezium 3.0.0.Alpha2 Released
Debezium日常分享系列之:Debezium 3.0.0.Alpha2 Released 一、重大改变基于Kafka3.8构建 二、新功能和改进JDBC SinkDebezium ServerGoogle SpannerVitess Debezium 3.0.0.Alpha2 版本包含许多新功能和改进,包括基于 Kafka 3.8 构建、JDBC 接收器连接器的…...

SumatraPDF暗黑模式以及如何还原快捷键
快捷键 英文输入模式下直接按 i 即可反色 添加标注 选中文字,右键...
LeetCode Medium|【300. 最长递增子序列】
力扣题目链接 本题有一个简单的解法是动态规划,时间复杂度 O(n^2),笔者在之前曾做过相关记录:300.最长递增子序列 现在我们来讨论 O ( n l o g ( n ) ) O(nlog(n)) O(nlog(n))的解法 局部最优:如果我们希望上升子序列尽可能的长&a…...

jenkins自动化构建docker镜像并上传至harbor仓库
1、插件下载 首先进入jenkins之后需要现在“Maven”、“GitLab”、“Jdk”、“SSH”、“Git”的相关插件,这里不再赘述,需要什么插件直接安装即可 搜索对应插件后选择直接安装即可 2、系统全局配置 2.1 Maven配置 配置maven安装的相应的setting文件 …...
Java高级Day23-HashMap
74.HashMap Map接口常用实现类:HashMap、Hashtable和Properties HashMap是Map接口使用频率最高的实现类 HashMap是以key-value对的方式来存储数据 key不能重复,但是值可以重复,允许使用null健和null值 如果添加相同的key,会覆…...

【学术会议征稿】第四届电气工程与计算机技术国际学术会议(ICEECT2024)
第四届电气工程与计算机技术国际学术会议(ICEECT2024) 2024 4th International Conference on Electrical Engineering and Computer Technology 第四届电气工程与计算机技术国际学术会议(ICEECT2024)将于9月27日-29日在哈尔滨举…...
Spring boot tomcat使用自定义线程池监控线程数量告警
Spring boot tocmat 使用自定义线程池 线程池 接近最大线程数量 警戒值告警 修改tomcat线程池中线程名字 配置文件上代码 server:port: 9898servlet:context-path: /testtomcat:connection-timeout: 5000max-connections: 5accept-count: 5 tomcat_thread_max_number_warn:…...
K8S子节点加入主节点访问MaterAPI报错:Unauthorized 401
问题场景: 本地测试由于之前安装过K8S今天重启无法使用了,于是重新安装了一下,子节点加入主节点报错: I0808 23:13:04.299356 19180 round_trippers.go:466] curl -v -XGET -H "Accept: application/json, */*" -H …...
C++ Poco服务端框架中JSON的使用
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、JSON是什么?二、使用步骤总结 前言 上面一篇文章教你学会了Poco开发服务端应用,这个教程教会你使用JSON。一般传JSON的时候都是POS…...

leetcode787. K 站中转内最便宜的航班——优先队列优化的Dijkstra算法+剪枝
题目 leetcode787. K 站中转内最便宜的航班 题目分析 给定一个城市图,每个城市通过航班与其他城市相连。每个航班都有一个起点、终点和价格。你需要找到从起点城市 src 到终点城市 dst 的最便宜路径,但这条路径最多只能经过 k 个中转站。你需要返回这…...

赛盈分销亮相AI科技大会暨亚马逊新增长大会,与企业共话跨境品牌发展新机遇!
八月开端,由知无不言与xmars和钱老师课堂联合主办的2024年AI科技大会暨亚马逊新增长大会在深圳宝安顺利开展,为期2天的跨境峰会吸引了上千位优秀的卖家朋友前来感受一场盛夏大狂欢。在本次跨境峰会里,邀请了多位不同领域的先锋人物࿰…...

Nacos-配置中心
1.为什么要使用配置中心? 2.常用的配置中心组件? 3.如何使用? 在配置中心创建配置文件 启动一个单列的nacos服务 点击发布 在微服务中使用 添加依赖 <!--nacso配置中心的依赖--><dependency><groupId>com.alibaba.cloud&l…...
ava中的文件操作、IO流、递归和字符集
目录 File类的使用 创建File对象 创建和删除文件 遍历文件夹 IO流 字节流 读取文件 字符流 读取文本文件 写入文本文件 递归 计算阶乘 文件搜索 字符集 编码与解码 File类的使用 在Java中,File类用于表示文件和目录的路径。它提供了一些方法来创建、删…...

生成式人工智能安全评估体系构建
文章目录 前言一、人工智能安全治理的现状1.1 国际安全治理现状1.2 国内安全治理现状二、构建人工智能安全评估体系1.1 需要对生成式人工智能技术的安全性、可靠性、可控性、公平性等维度进行全面的考量。1.2 应对生成式人工智能全维度风险。1.3 在体系化应对框架中,应明确法律…...

NRBO-XGBoost分类 基于牛顿-拉夫逊优化算法[24年最新算法]-XGBoost多特征分类预测+交叉验证
NRBO-XGBoost分类 基于牛顿-拉夫逊优化算法[24年最新算法]-XGBoost多特征分类预测交叉验证 多输入单输出) matlab代码 程序已调试好,无需更改代码替换数据直接使用!!!数据格式为excel格式!需要定制可私&a…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...

2.Vue编写一个app
1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...