AI人工智能机器学习
AI人工智能 机器学习的类型(ML)
学习意味着通过学习或经验获得知识或技能。 基于此,我们可以定义机器学习(ML)
它被定义为计算机科学领域,更具体地说是人工智能的应用,它提供计算机系统学习数据和改进经验而不被明确编程的能力。
基本上,机器学习的主要重点是让电脑自动学习,无需人工干预。 现在的问题是,如何开始这样的学习并完成? 它可以从数据观察开始。 数据可以是一些例子,指导或一些直接的经验。 然后在这个输入的基础上,机器通过查找数据中的一些模式来做出更好的决定。
机器学习的类型(ML)
机器学习算法有助于计算机系统学习,而无需明确编程。 这些算法分为有监督或无监督。 现在让我们来看看几个常见的算法 -
监督机器学习算法
这是最常用的机器学习算法。 它被称为监督学习算法,因为从训练数据集中算法学习的过程可以被认为是监督学习过程的教师。 在这种ML算法中,可能的结果是已知的,并且训练数据也标有正确的答案。可以理解如下 -
假设有输入变量x和输出变量y,并且我们应用了一种算法来学习从输入到输出的映射函数,例如 -
Y = f(x)
现在,主要目标是近似映射函数,当有新的输入数据(x)时,可以预测该数据的输出变量(Y)。
主要监督问题可分为以下两类问题 -
分类 - 当有“黑色”,“教学”,“非教学”等分类输出时,问题被称为分类问题。
回归 - 当拥有“距离”,“千克”等真实值输出时,问题就称为回归问题。
决策树,随机森林,knn,逻辑回归是监督机器学习算法的例子。
顾名思义,这类机器学习算法没有任何主管提供任何指导。 这就是为什么无监督机器学习算法与一些人们称之为真正的人工智能密切相关的原因。 可以理解如下 -
假设有输入变量x,那么在无监督学习算法中就没有相应的输出变量。
简而言之,可以说在无监督学习中,没有正确的答案,也没有教师指导。 算法有助于发现数据中有趣的模式。
无监督学习问题可以分为以下两类问题 -
聚类 - 在聚类问题中,我们需要发现数据中的固有分组。 例如,按顾客的购买行为分组。
关联 - 一个问题称为关联问题,因为这类问题需要发现描述大部分数据的规则。 例如,找到同时购买 x 和 y 商品的顾客。
用于聚类的 K-means,Apriori 关联算法是无监督机器学习算法的例子。增强机器学习算法 这些机器学习算法的使用量非常少。
这些算法训练系统做出特定的决定。 基本上,机器暴露在使用试错法不断训练自己的环境中。 这些算法从过去的经验中学习并尝试捕获最佳可能的知识以做出准确的决策。 马尔可夫决策过程就是增强机器学习算法的一个例子。
AI人工智能 最常见的机器学习算法
在本节中,我们将学习最常见的机器学习算法。 算法如下所述 -
线性回归 它是统计和机器学习中最著名的算法之一
基本概念 - 主要是线性回归是一个线性模型,假设输入变量 x 和单个输出变量 y 之间的线性关系。 换句话说,y可以由输入变量 x 的线性组合来计算。 变量之间的关系可以通过拟合最佳线来确定。
线性回归的类型
线性回归有以下两种类型 -
简单线性回归 - 如果线性回归算法只有一个独立变量,则称为简单线性回归。
多元线性回归 - 如果线性回归算法具有多个独立变量,则称其为多元线性回归。
线性回归主要用于基于连续变量估计实际值。 例如,可以通过线性回归来估计一天内基于实际价值的商店总销售额。
Logistic 回归 它是一种分类算法,也称为 logit 回归。
主要逻辑回归是一种分类算法,用于根据给定的一组自变量来估计离散值,如 0 或 1,真或假,是或否。 基本上,它预测的概率因此它的输出在 0和 1 之间。
决策树 决策树是一种监督学习算法,主要用于分类问题。
基本上它是一个基于自变量表示为递归分区的分类器。 决策树具有形成根树的节点。 有根树是一个带有称为“根”节点的定向树。 Root 没有任何传入边缘,所有其他节点都有一个传入边缘。 这些节点被称为树叶或决策节点。 例如,考虑下面的决策树来判断一个人是否适合。
支持向量机(SVM)
它用于分类和回归问题。 但主要用于分类问题。 SVM 的主要概念是将每个数据项绘制为n维空间中的一个点,每个特征的值是特定坐标的值。 这里 n 将是功能。 以下是了解 SVM 概念的简单图形表示 -

在上图中,有两个特征,因此首先需要在二维空间中绘制这两个变量,其中每个点都有两个坐标,称为支持向量。 该行将数据分成两个不同的分类组。 这条线将是分类器。
朴素贝叶斯 这也是一种分类技术。 这种分类技术背后的逻辑是使用贝叶斯定理来构建分类器。 假设是预测变量是独立的。 简而言之,它假设类中某个特征的存在与任何其他特征的存在无关。 以下是贝叶斯定理的等式 -

朴素贝叶斯模型易于构建,特别适用于大型数据集。
K-最近邻居 (KNN)
它用于问题的分类和回归。 它被广泛用于解决分类问题。 该算法的主要概念是它用来存储所有可用的案例,并通过其k个邻居的多数选票来分类新案例。 然后将该情况分配给通过距离函数测量的K近邻中最常见的类。 距离函数可以是欧几里得,明可夫斯基和海明距离。 考虑以下使用 KNN -
计算上 KNN 比用于分类问题的其他算法昂贵。
变量的规范化需要其他更高的范围变量可以偏差。
在 KNN 中,需要在噪音消除等预处理阶段进行工作。
K 均值聚类
顾名思义,它用于解决聚类问题。 它基本上是一种无监督学习。 K-Means 聚类算法的主要逻辑是通过许多聚类对数据集进行分类。 按照这些步骤通过 K-means 形成聚类 -
K-means 为每个簇选取 k 个点,称为质心。
每个数据点形成具有最接近质心的群集,即k个群集。
它将根据现有集群成员查找每个集群的质心。
需要重复这些步骤直到收敛。
随机森林 它是一个监督分类算法。 随机森林算法的优点是它可以用于分类和回归两类问题。 基本上它是决策树的集合(即森林),或者可以说决策树的集合。随机森林的基本概念是每棵树给出一个分类,并且森林从它们中选择最好的分类。以下是随机森林算法的优点 -
随机森林分类器可用于分类和回归任务。
可以处理缺失的值。
即使在森林中有更多的树,它也不会过度适合模型
相关文章:
AI人工智能机器学习
AI人工智能 机器学习的类型(ML) 学习意味着通过学习或经验获得知识或技能。 基于此,我们可以定义机器学习(ML) 它被定义为计算机科学领域,更具体地说是人工智能的应用,它提供计算机系统学习数据和改进经验而不被明确编程的能力。 基本上&…...
试用AWS全新神器:Amazon Bedrock的「Open Artifacts」版Claude.ai Artifacts
Claude.ai的Artifacts真是太方便了。 GitHub上的AWS Samples仓库中有一个仿制Artifacts的应用程序。 Open Artifacts for Amazon Bedrock https://github.com/aws-samples/open_artifacts_for_bedrockhttps://github.com/aws-samples/open_artifacts_for_bedrock本文将介绍「…...
W3C XML 活动
关于W3C的XML活动,XML(可扩展标记语言)是一种用于描述、存储、传送及交换数据的标准。W3C(万维网联盟)对XML的发展起到了关键作用,推出了一系列的版本和相关的技术规范。 XML版本历史: XML 1.0&…...
vue请求springboot接口下载zip文件
说明 其实只需要按照普通文件流下载即可,以下是一个例子,仅供参考。 springboot接口 RestController RequestMapping("/api/files") public class FileController {GetMapping("/download")public ResponseEntity<Resource>…...
PySide6||QPushButton的QSS样式
1、狗狗拜按钮 QQ202484-03338 (online-video-cutter.com) /* QPushButton的基本样式 */ QPushButton { background-image:url(:/xxx/第1帧.png); /* 设置背景图片 */ background-repeat: no-repeat; /* 不重复背景图片 */ background-position: center; /* 将背景图片居中…...
HarmonyOS鸿蒙应用开发之ArkTS基本语法
ArkTS(Ark TypeScript)是一种基于TypeScript的扩展语言,专为鸿蒙应用开发设计。它在保持TypeScript基本语法风格的基础上,对TypeScript的动态类型特性施加了更严格的约束,并引入了静态类型,以减少运行时开销…...
Web开发-CSS篇-上
CSS的发展历史 CSS(层叠样式表)最初由万维网联盟(W3C)于1996年发布。CSS1是最早的版本,它为网页设计提供了基本的样式功能,如字体、颜色和间距。随着互联网的发展,CSS也不断演进: C…...
在mac上通过 MySQL 安装包安装 MySQL 之后,终端执行 mysql 命令报错 command not found: mysql
在 mac 上通过 MySQL 安装包安装 MySQL 之后,如果在终端中运行 mysql 命令时遇到 command not found: mysql 错误,通常是因为 MySQL 的二进制文件没有被添加到系统的 PATH 环境变量中。 解决方法:手动添加 MySQL 到 PATH 环境变量 1.找到 M…...
Unity入门4——常用接口
C#中常用类和接口 DateTime:表示某个时刻 DateTime.Now:拿到系统当前时间DtaTime.TimeOfDay:获取此实例当天的时间 Quaternion:用来旋转,采用四元数,由w(实部)和x,y,z(虚…...
职业教育云计算实验实训室建设应用案例
云计算作为信息技术领域的一次革命,正在深刻改变着我们的工作和生活方式。随着企业对云计算技术的依赖日益加深,对具备云计算技能的专业人才的需求也日益迫切。职业院校面临着培养符合行业标准的云计算人才的挑战。唯众凭借其在教育技术领域的专业经验&a…...
MySQL-MHA高可用配置及故障切换
目录 案例搭建 1:所有服务器关闭防火墙 2:设置hosts文件 3:安装 MySQL 数据库 4:修改参数 5:安装 MHA 软件 6:配置无密码认证 7:配置 MHA 8:模拟 master 故障 MHA(MasterHi…...
Sentinel 滑动时间窗口源码分析
前言: Sentinel 的一个重要功能就是限流,对于限流来说有多种的限流算法,比如滑动时间窗口算法、漏桶算法、令牌桶算法等,Sentinel 对这几种算法都有具体的实现,如果我们对某一个资源设置了一个流控规则,并…...
猎码安卓APP开发IDE,amix STUDIO中文java,HTML5开发工具
【无爱也能发电】Xili 2024/8/2 10:41:20 猎码安卓APP开发IDE,amix java开发工具 我研发这些只有一小部分理由是为了赚钱,更多是想成就牛逼的技术产品。 目前的产品就够我赚钱的,我持续更新就好了,没必要继续研究。 IDE不赚钱,谁…...
【Deep-ML系列】Linear Regression Using Gradient Descent(手写梯度下降)
题目链接:Deep-ML 这道题主要是要考虑矩阵乘法的维度,保证维度正确,就可以获得最终的theata import numpy as np def linear_regression_gradient_descent(X: np.ndarray, y: np.ndarray, alpha: float, iterations: int) -> np.ndarray:…...
NVIDIA A100 和 H100 硬件架构学习
目前位置NV各种架构代号: NVIDIA GPU 有多个代号和架构,这些架构对应不同的世代和硬件特性。以下是 NVIDIA 主要 GPU 架构及其计算能力(Compute Capability)代号的简要概述: Tesla 架构 G80、GT200 Compute Capabi…...
企业研发设计协同解决方案
新迪三维设计,20年深耕三维CAD 全球工业软件研发不可小觑的中国力量 2003-2014 年 新迪数字先后成为达 索SolidWorks、 ANSYS Spaceclaim、MSC等三维CAD/CAE 软件厂商的中国研发中心,深度参与国际 一流工业软件的研发过程,积累了丰富的 技术经…...
iOS 18(macOS 15)Vision 中新增的任意图片智能评分功能试玩
概述 在 WWDC 24 中库克“大厨”除了为 iOS 18 等平台重磅新增了 Apple Intelligence 以外,苹果也利用愈发成熟的机器学习引擎扩展了诸多内置框架,其中就包括 Vision。 想用本机人工智能自动为我们心仪的图片打一个“观赏分”吗?“如意如意&…...
如何实现若干子任务一损俱损--浅谈errgroup
errgroup 是 Go 语言官方扩展库 x/sync 中的一个包,它提供了一种方式来并行运行多个 goroutine,并在所有 goroutine 都完成时返回第一个发生的错误(如果有的话)。这对于需要并行处理多个任务并等待它们全部完成,同时需…...
并查集的基础题
## 洛谷p1196 绿 35m 点到祖先的距离 代码: #include<bits/stdc.h> using namespace std; const int N3e510; int f[N],dist[N],num[N];//num计算祖先有多少儿子 ,dist计算距离祖先有几个 int zx(int x){ if(f[x]x)return x;//x没爸爸 e…...
[论文翻译] LTAChecker:利用注意力时态网络基于 Dalvik 操作码序列的轻量级安卓恶意软件检测
LTAChecker: Lightweight Android Malware Detection Based on Dalvik Opcode Sequences using Attention Temporal Networks 摘要: Android 应用程序已成为黑客攻击的主要目标。安卓恶意软件检测是一项关键技术,对保障网络安全和阻止异常情况至关重要。…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...
c++第七天 继承与派生2
这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...
