当前位置: 首页 > news >正文

基于Python和OpenCV的图像处理的轮廓查找算法及显示

文章目录

    • 概要
    • 轮廓查找算法
    • 示例代码
    • 代码解释
    • 小结

概要

在图像处理中,轮廓查找是一个重要的步骤,它可以帮助我们识别图像中的形状和边界。Python结合OpenCV库可以非常方便地实现这一功能。本文将详细介绍如何使用Python和OpenCV来查找图像中的轮廓,并将这些轮廓显示在原始图像上。

轮廓查找算法

轮廓查找通常涉及以下几个步骤:
读取图像并转换为灰度图。
对灰度图进行二值化处理,以简化图像。
使用findContours函数查找二值图像中的轮廓。
使用drawContours函数将找到的轮廓绘制到原始图像上。

示例代码

import cv2  
import numpy as np  # 1. 读取图像  
image = cv2.imread('your_image.jpg')  # 请将'your_image.jpg'替换为你的图像文件名  
if image is None:  print("Error: 图像文件未找到")  exit()  # 2. 转换为灰度图  
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)  # 3. 二值化处理  
_, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)  # 4. 查找轮廓  
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)  # 5. 绘制轮廓  
# 创建一个与原图大小相同的黑色图像用于绘制轮廓  
result = np.zeros_like(image)  
cv2.drawContours(result, contours, -1, (0, 255, 0), 2)  # 绘制所有轮廓,颜色为绿色,线宽为2  # 或者,你也可以选择绘制特定的轮廓,例如第一个轮廓  
# cv2.drawContours(result, [contours[0]], 0, (0, 255, 0), 2)  # 6. 显示结果  
cv2.imshow('Original Image', image)  
cv2.imshow('Contours', result)  
cv2.waitKey(0)  
cv2.destroyAllWindows()

代码解释

读取图像:使用cv2.imread()函数读取图像文件。
转换为灰度图:使用cv2.cvtColor()函数将图像从BGR颜色空间转换为灰度空间。
二值化处理:使用cv2.threshold()函数对灰度图像进行二值化处理,生成一个二值图像。
查找轮廓:使用cv2.findContours()函数在二值图像中查找轮廓。该函数返回轮廓列表和轮廓的层次结构信息。
绘制轮廓:使用cv2.drawContours()函数将找到的轮廓绘制到黑色图像上。这里我们创建了一个与原图大小相同的黑色图像result,用于绘制轮廓。
显示结果:使用cv2.imshow()函数显示原始图像和绘制了轮廓的图像。

小结

确保图像文件路径正确,否则cv2.imread()将返回None。
cv2.findContours()函数的返回值在不同的OpenCV版本中可能有所不同。在OpenCV 4.x中,它返回两个值(轮廓和层次结构),而在早期版本中可能返回三个值(图像、轮廓和层次结构)。
轮廓检索模式(mode)和轮廓近似方法(method)可以根据具体需求进行调整。

相关文章:

基于Python和OpenCV的图像处理的轮廓查找算法及显示

文章目录 概要轮廓查找算法示例代码代码解释小结 概要 在图像处理中,轮廓查找是一个重要的步骤,它可以帮助我们识别图像中的形状和边界。Python结合OpenCV库可以非常方便地实现这一功能。本文将详细介绍如何使用Python和OpenCV来查找图像中的轮廓&#…...

使用ant design的modal时,发现自定义组件的样式(组件高度)被改变了!

一 问题描述 在项目中,自定义了一个组件,分别在界面和 antd的modal中都有使用到。但是突然发现,界面中的组件样式跟modal中的组件样式高度不一样。modal中的组件整体要比页面中的组件要高一点。 项目中的自定义组件比较复杂,因此&…...

NLP从零开始------8文本进阶处理之文本向量化

1. 文本向量化概述 随着计算机计算能力的大幅度提升,机器学习和深度学习都取得了长足的发展。NLP越来越多的通过应用机器学习和深度学习工具解决问题,例如通过深度学习模型从网络新闻报道中分析出关键词汇与舆论主题并构建关系图谱。在这种背景下&#x…...

【网络编程】字节序,IP地址、点分十进制、TCP与UDP的异同

记录学习,思维导图绘制 目录 1、字节序​编辑 2、IP地址 3、点分十进制 4、TCP与UDP的异同 1、字节序 2、IP地址 3、点分十进制 4、TCP与UDP的异同...

关于k8s的pvc存储卷

目录 1.PVC 和 PV 1.1 PV 1.2 PVC 1.3 StorageClass 1.4 PV和PVC的生命周期 2.实战演练 2.1 创建静态pv 2.2 创建动态pv 3.总结 1.PVC 和 PV 1.1 PV PV 全称叫做 Persistent Volume,持久化存储卷。它是用来描述或者说用来定义一个存储卷的,…...

【物联网设备端开发】ESP开发工具:QEMU的使用方法

概要 本文提供了一些运行QEMU的ESP特定说明。有关QEMU的一般使用问题,请参阅官方文档:https://www.qemu.org/documentation/. 编译 QEMU 准备工作 在此之前,请查看有关构建先决条件的QEMU文档。如果你在Linux主机上构建QEMU,你…...

c++中std::endl 和“\n“ 这两个换行符有什么区别

std::endl 和 "\n" 都用于在C中生成换行符,但它们之间有一些重要的区别 std::endl: 功能:输出一个换行符,并刷新输出流(即缓冲区)。作用:确保所有数据立即输出到目的地,例…...

http中get和post怎么选

5.4.2.怎么选择1.如果你是想从服务器上获取资源,建议使用GET请求,如果你这个请求是为了向服务器提交数据,建议使用POST请求。2.大部分的form表单提交,都是post方式,因为form表单中要填写大量的数据,这些数据…...

数据分析及应用:快手直播间人员在线分析

目录 0 需求描述 1、进入直播间的高峰期为?(以进入用户数衡量) 2、晚上 11 点,哪个直播间的进入人数最多? 3、20:00-23:00,娱乐类、搞笑类,进入人数最多直播间分别是? 4、娱乐类、搞笑类,人均在线时长(退出时间-进入时间)最长的直播间分别是? 5、同时在线人数…...

【Python】nn.nn.CircularPad1、2、3d函数和nn.ConstantPad1、2、3d函数详解和示例

前言 在深度学习中,尤其是在处理图像、音频或其他多维数据时,数据填充(Padding)是一个常见的操作。填充不仅可以保持数据的空间维度,还能在卷积操作中避免信息丢失。PyTorch提供了多种填充方式,其中nn.Cir…...

LearnOpenGL——混合、面剔除

LearnOpenGL——混合、面剔除 混合 Blending一、丢弃片段 Alpha Test二、混合 Alpha Blending渲染顺序 面剔除一、环绕顺序二、面剔除 混合 Blending OpenGL中,混合(Blending)通常是实现物体透明度(Transparency)的一种技术。透明的物体可以是完全透明的&#xff0…...

视频网站为何热衷于SCDN

视频网站为何热衷于SCDN?随着互联网技术的飞速发展,视频网站已成为人们日常生活中不可或缺的一部分。无论是观看高清电影、热门剧集,还是直播体育赛事、游戏竞技,视频网站都以其丰富的内容和便捷的访问方式吸引了无数用户。然而&a…...

Redis与DataBase保持数据一致性

文章目录 1. 读取数据2. 写数据2.1 先操作缓存2.2 先操作数据库 在我们系统中缓存最常用的策略是:服务端需要同时维系DB和Cache,并且是以DB的结果为准, Cache-Aside Pattern(缓存分离模式、旁路缓存)。 1. 读取数据 当…...

解决 MacOS 连接公司 VPN 成功但是不能网络的问题

目录 解决办法2024 Mac mini 爆料 解决办法 操作比较简单,修改配置文件即可(如果没有则需要手动创建)。 sudo vim /etc/ppp/options在此文件下,加入 plugin L2TP.ppp: plugin L2TP.ppp如果文件里有l2tpnoipsec&…...

【Kubernetes】k8s集群之Pod容器资源限制和三种探针

目录 一、Pod容器的资源限制 1.资源限制 2.Pod 和容器的资源请求与限制 3.CPU 资源单位 4.内存资源单位 二、Pod容器的三种探针 1.探针的三种规则 2.Probe支持三种检查方法: 一、Pod容器的资源限制 1.资源限制 当定义 Pod 时可以选择性地为每个容器设定所…...

从古代驿站体系看软件安全管控@安全历史04

在古代,车、马都很慢,信息传递很不顺畅,中央的政令又是如何传达至地方的呢?实际上,很多朝代都有专门的驿站制度,可以保障全国各地的信息传递,对于维护统治和稳定有着关键作用。 若将国家比作一个…...

8.8 哈希表简单 1 Two Sum 141 Linked List Cycle

1 Two Sum class Solution { public:vector<int> twoSum(vector<int>& nums, int target) {//给的target是目标sum 要返回vector<int> res(2,0);是在num中找加数//首先假设每个输入都是由唯一的结果&#xff0c;而且不适用相同的元素两次一共有n*(n-1)种…...

动态规划之——背包DP(完结篇)

文章目录 概要说明分组背包模板例题1思路code模板例题2思路code 有依赖的背包问题模板例题思路code 背包问题求方案数模板例题思路code 背包问题求具体方案模板例题思路code 概要说明 本文讲分组背包、有依赖的背包、 背包问题求方案数以及背包问题求具体方案 入门篇(01背包和…...

Advanced IP Scanner - 网络扫描工具介绍

Advanced IP Scanner 是一款免费、快速且用户友好的网络扫描工具。它能够帮助用户扫描局域网&#xff08;LAN&#xff09;中的所有设备&#xff0c;提供详细的设备信息&#xff0c;包括IP地址、MAC地址、设备名称和厂商信息。该工具对IT管理员和普通用户都非常有用&#xff0c;…...

数据库事务的四大特性ACID

数据库事务的四大特性ACID 数据库事务&#xff08;Transaction&#xff09;是数据库管理系统&#xff08;DBMS&#xff09;执行过程中的一个逻辑单位&#xff0c;由一个或多个SQL语句组成&#xff0c;这些语句作为一个整体一起向系统提交&#xff0c;要么全部执行&#xff0c;…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​&#xff1a; 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​&#xff1a; File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

高防服务器价格高原因分析

高防服务器的价格较高&#xff0c;主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因&#xff1a; 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器&#xff0c;因此…...

MySQL体系架构解析(三):MySQL目录与启动配置全解析

MySQL中的目录和文件 bin目录 在 MySQL 的安装目录下有一个特别重要的 bin 目录&#xff0c;这个目录下存放着许多可执行文件。与其他系统的可执行文件类似&#xff0c;这些可执行文件都是与服务器和客户端程序相关的。 启动MySQL服务器程序 在 UNIX 系统中&#xff0c;用…...

GAN模式奔溃的探讨论文综述(一)

简介 简介:今天带来一篇关于GAN的,对于模式奔溃的一个探讨的一个问题,帮助大家更好的解决训练中遇到的一个难题。 论文题目:An in-depth review and analysis of mode collapse in GAN 期刊:Machine Learning 链接:...