当前位置: 首页 > news >正文

算法板子:欧拉函数——求一个数的欧拉函数、线性时间内求1~n所有数的欧拉函数

目录

1. 欧拉函数

(1)概念

(2)性质

(3)计算公式

2. 求一个数的欧拉函数

(1)模拟过程

(2)代码 

3. 线性时间内求1~n所有数的欧拉函数——筛法求欧拉函数

(1)要点

(2)代码

1. 欧拉函数

(1)概念

给一个整数n,求n的欧拉函数就是求1~n中有几个数和n互质。互质就是两个整数除了1以外没有其他的公约数。

(2)性质

(3)计算公式

2. 求一个数的欧拉函数

(1)模拟过程

(2)代码 
#include <iostream>
using namespace std;// 求x这个数的欧拉函数
int phi(int x)
{// res代表1~x中与x互质的数的个数int res = x;// i从2枚举到根号xfor (int i = 2; i <= x / i; i ++ ){// 如果i是x的质因子if (x % i == 0){// 记得先除质因子再乘质因子减一; 先乘法可能会爆intres = res / i * (i - 1);while (x % i == 0) x /= i;}}// 如果最终x>1, 代表最终x也是原x的质因子; 所以就除质因子再乘质因子减一if (x > 1) res = res / x * (x - 1);return res;
}int main()
{int n;cin >> n;while (n --){int x;cin >> x;cout << phi(x) << endl;}return 0;
}

3. 线性时间内求1~n所有数的欧拉函数——筛法求欧拉函数

(1)要点

可以在线性的时间内求出1~n所有数的欧拉函数,时间复杂度比上一种更小,模版类似筛法求质数。

(2)代码
#include <iostream>
using namespace std;const int N = 1e6 + 10;
int n;// vis[i]代表i这个数是否是合数; vis[4]=1代表4这个数是合数, vis[3]=0代表3这个数是质数
// p[i]代表第1~n中i个质数的值; p[1]=2代表1~n中第1个质数是2
// cnt代表1~n中质数的个数
int vis[N], p[N], cnt;
// phi[i]代表i这个数的欧拉函数; phi[5]=4代表5这个数的欧拉函数为4(跟5互质的数有1,2,3,4)
int phi[N];// 求1~n所有数的欧拉函数
void get_phi(int n)
{// 特判1的欧拉函数phi[1] = 1;// 求2~n所有数的欧拉函数for (int i = 2; i <= n; i ++ ){// 如果i是质数, 记录在p数组中, 并且质数的欧拉函数是质数减一if (!vis[i]) p[ ++ cnt] = i, phi[i] = i - 1;// j从1开始枚举for (int j = 1; 1LL * i * p[j] <= n; j ++ ){// 记录i*p[j]是合数vis[i * p[j]] = 1;// 求i*p[j]的欧拉函数if (i % p[j] == 0) {phi[i * p[j]] = phi[i] * p[j];break;}else phi[i * p[j]] = phi[i] * (p[j] - 1);}}
}int main()
{cin >> n;// 得到1~n所有数的欧拉函数, 记录在phi数组中get_phi(n);long long res = 0;for (int i = 1; i <= n; i ++ ) res += phi[i];cout << res << endl;return 0;
}

相关文章:

算法板子:欧拉函数——求一个数的欧拉函数、线性时间内求1~n所有数的欧拉函数

目录 1. 欧拉函数 &#xff08;1&#xff09;概念 &#xff08;2&#xff09;性质 &#xff08;3&#xff09;计算公式 2. 求一个数的欧拉函数 &#xff08;1&#xff09;模拟过程 &#xff08;2&#xff09;代码 3. 线性时间内求1~n所有数的欧拉函数——筛法求欧拉函…...

2024牛客暑期多校训练营8

文章目录 A. Haitang and GameE.Haitang and MathJ. Haitang and TriangleK. Haitang and Ava A. Haitang and Game 通过审题可以知道&#xff0c;最后的胜者和若干次操作后最多能增加的数的奇偶有关。 由于 a i a_i ai​ 较小&#xff0c;所以我们枚举每一个没出现过的 x …...

git的一些操作指令

一、git 提交规范 commit message subject &#xff1a; 空格 message 主体 feat: 新功能&#xff08;feature&#xff09;用于提交新功能。fix: 修复 bug用于提交 bug 修复。docs: 文档变更用于提交仅文档相关的修改。style: 代码风格变动&#xff08;不影响代码逻辑&…...

【IT行业研究报告】Internet Technology

一、引言 随着信息技术的飞速发展&#xff0c;IT行业已成为全球经济的重要驱动力。从云计算、大数据、人工智能到物联网&#xff0c;IT技术正深刻改变着各行各业的生产方式、商业模式和人们的生活方式。本报告旨在深入分析IT行业的现状、发展趋势和挑战&#xff0c;探讨其在各…...

GLM大模型的机器翻译能力测试

背景介绍 最近想对GLM-4今年发布的几个大模型 glm-4-0520&#xff0c;glm-4-air以及glm-4-flash简单评测一下它们的机器翻译能力&#xff0c;由于这几个大模型的容量和训练数据都有区别&#xff0c;所以它们的翻译能力也是不同的。我们这里就分别选择一些有趣的&#xff0c;有…...

【硬件产品经理】汽车A样设计

目录 简介 制造方式 作者简介 简介 一般被称作原型样件(Prototype)。 主要是根据系统需求设计,实现基本功能和关键尺寸,用于基本功能的验证,用于初期产品软件调试和Hil台架测试(Hardware in Loop,硬件在环)的样机阶段。 也就说在设计初期,A样的主要目的可以划分…...

Ubuntu22.04系统中安装机器人操作系统ROS

在Ubuntu 22.04上安装ROS&#xff08;Robot Operating System&#xff09;的过程可以分为几个主要步骤。请注意&#xff0c;ROS有不同的版本&#xff08;如ROS 1的Melodic、Noetic等&#xff0c;以及ROS 2的Foxy、Humble等&#xff09;&#xff0c;这些版本对Ubuntu的支持程度可…...

LeetCode54题:螺旋矩阵(原创)

【题目描述】 给你一个 m 行 n 列的矩阵 matrix &#xff0c;请按照 顺时针螺旋顺序 &#xff0c;返回矩阵中的所有元素。 示例 1&#xff1a; 输入&#xff1a;matrix [[1,2,3],[4,5,6],[7,8,9]] 输出&#xff1a;[1,2,3,6,9,8,7,4,5]示例 2&#xff1a; 输入&#xff1a;mat…...

FPGA常见型号

FPGA&#xff08;现场可编程门阵列&#xff09;开发板种类繁多&#xff0c;涵盖了从入门级教育用途到高性能工业应用的广泛领域。以下是一些常见的 FPGA 开发板型号及其特点&#xff1a; 1. Xilinx&#xff08;赛灵思&#xff09;系列 Xilinx 是 FPGA 领域的领导者之一&#…...

【多模态大模型】FlashAttention in NeurIPS 2022

一、引言 论文&#xff1a; FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness 作者&#xff1a; Stanford University 代码&#xff1a; FlashAttention 特点&#xff1a; 该方法提出将Q、K、V拆分为若干小块&#xff0c;使执行注意力时不需要频…...

过滤器doFilter 方法

在Java EE中&#xff0c;过滤器的放行是指在过滤器的 doFilter 方法中调用 FilterChain 对象的 doFilter 方法&#xff0c;将请求传递给下一个过滤器或目标 servlet 进行处理。这个过程可以理解为过滤器的责任链传递。 过滤器的 doFilter 方法 在过滤器中&#xff0c;实现 Fil…...

WPF篇(9)-CheckBox复选框+RadioButton单选框+RepeatButton重复按钮

CheckBox复选框 CheckBox继承于ToggleButton&#xff0c;而ToggleButton继承于ButtonBase基类。 案例 前端代码 <StackPanel Orientation"Horizontal" HorizontalAlignment"Center" VerticalAlignment"Center"><TextBlock Text"…...

【机器学习基础】线性回归

【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈Python机器学习 ⌋ ⌋ ⌋ 机器学习是一门人工智能的分支学科&#xff0c;通过算法和模型让计算机从数据中学习&#xff0c;进行模型训练和优化&#xff0c;做出预测、分类和决策支持。Python成为机器学习的首选语言&#xff0c;…...

java基础概念12-二维数组

一、二维数组的定义 二维数组可以被视为数组的数组&#xff0c;即每个元素都是一个数组。 二维数组的应用场景&#xff1a; 当我们需要把数据分组管理的时候&#xff0c;就需要用到二维数组。 二、二维数组的初始化 2-1、静态初始化 阿里巴巴规范手册&#xff1a; // 静态初始…...

56 锐键交换机开局

锐键交换机开局 一 锐键视图切换 1 Ruijie> 用户视图 2 Ruijie# 特权模式 3 Ruijie(config)# 全局配置模式 4 Ruijie(config-if-GigabitEthernet 1/1/1)# 接口配置模式 5 Ruijie(config)#show vlan 6 exit (退出) 7 enable(进入)...

VR虚拟展厅与传统实体展厅相比,有哪些优势?

视创云展虚拟展厅相比传统的实体展厅具有多方面的优势&#xff0c;主要体现在以下几个方面&#xff1a; 1、降低成本&#xff1a; 虚拟展厅无需租赁或建设物理空间&#xff0c;减少了场地、装修和维护等方面的开支。同时&#xff0c;参观者和参展商无需现场参观或布展&#x…...

Vue的事件处理、事件修饰符、键盘事件

目录 1. 事件处理基本使用2. 事件修饰符3. 键盘事件 1. 事件处理基本使用 使用v-on:xxx或xxx绑定事件&#xff0c;其中xxx是事件名&#xff0c;比如clickmethods中配置的函数&#xff0c;都是被Vue所管理的函数&#xff0c;this的指向是vm或组件实例对象 <!DOCTYPE html&g…...

c++单例实践

C单例实践 在日常开发中&#xff0c;虽然太多的单例调用会让代码的耦合度变高&#xff0c;但是例如日志类这种&#xff0c;单例模式就变得非常有。所以这篇文章为大家介绍static 关键字相关知识以及如何实现自己的C单例类。 static关键字 首先让我们请出今天的主角: static。…...

SQL注入实例(sqli-labs/less-9)

0、初始页面 1、爆库名 使用python脚本 def inject_database1(url):name for i in range(1, 20):low 32high 128mid (low high) // 2while low < high:payload "1 and if(ascii(substr(database(),%d,1)) > %d ,sleep(2),0)-- " % (i, mid)res {"…...

http不同类型方法的作用,get和post区别

在HTTP协议中&#xff0c;不同的请求方法用于不同的操作。常见的HTTP方法包括GET、POST、PUT、DELETE、HEAD、OPTIONS、PATCH等&#xff0c;每种方法有其特定的作用。 常见的HTTP方法及其作用 1. GET - **作用**: 从服务器请求指定资源。GET方法通常用于获取数据而不会修改数据…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

作为测试我们应该关注redis哪些方面

1、功能测试 数据结构操作&#xff1a;验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化&#xff1a;测试aof和aof持久化机制&#xff0c;确保数据在开启后正确恢复。 事务&#xff1a;检查事务的原子性和回滚机制。 发布订阅&#xff1a;确保消息正确传递。 2、性…...

自然语言处理——文本分类

文本分类 传统机器学习方法文本表示向量空间模型 特征选择文档频率互信息信息增益&#xff08;IG&#xff09; 分类器设计贝叶斯理论&#xff1a;线性判别函数 文本分类性能评估P-R曲线ROC曲线 将文本文档或句子分类为预定义的类或类别&#xff0c; 有单标签多类别文本分类和多…...